English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Molecular and Cellular Cardiology 2003-Dec

Reoxygenation-induced rigor-type contracture.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yury Ladilov
Ozkan Efe
Claudia Schäfer
Bettina Rother
Sascha Kasseckert
Yaser Abdallah
Karsten Meuter
Klaus Dieter Schlüter
Hans Michael Piper

Keywords

Abstract

The hypothesis tested was that reoxygenation-induced contracture of myocardial cells, a form of reperfusion injury, can be due to a rigor-type mechanism. Isolated adult cardiomyocytes were exposed to 30- or 60-min anoxia (pH 6.4) and reoxygenation (pH 7.4). In cardiomyocytes, cytosolic Ca(2+) and cell length, and in isolated rat hearts left ventricular end-diastolic pressure (LVEDP) were measured. During reoxygenation, cardiomyocytes developed contracture. When energy recovery was slowed down, less Ca(2+) overload was required for contracture: (1) after 30-min anoxia Ca(20) (cytosolic Ca(2+) concentration in cells with 20% cell length reduction) was 1.42 +/- 0.11 micromol/l; (2) after 30-min anoxia with partial mitochondrial inhibition during reoxygenation (NaCN, 0.1 mmol/l) Ca(20) was reduced to 0.69 +/- 0.05 micromol/l; (3) after 60-min anoxia Ca(20) was reduced to 0.78 +/- 0.05 micromol/l and (4) when energy recovery was accelerated (succinate, 0.2 mmol/l), Ca(20) rose to 1.35 +/- 0.05 micromol/l. In isolated hearts, the reperfusion-induced rise in LVEDP was modulated by the same interventions. Slow recovery of energy production favors reoxygenation-induced contracture in cardiomyocytes and hearts. This shows that rigor contracture contributes to reoxygenation-induced cell injury.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge