English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Foods for Human Nutrition 2013-Mar

Reverse-phase HPLC separation of hemp seed (Cannabis sativa L.) protein hydrolysate produced peptide fractions with enhanced antioxidant capacity.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Abraham T Girgih
Chibuike C Udenigwe
Rotimi E Aluko

Keywords

Abstract

Hemp seed protein hydrolysate (HPH) was produced through simulated gastrointestinal tract (GIT) digestion of hemp seed protein isolate followed by partial purification and separation into eight peptide fractions by reverse-phase (RP)-HPLC. The peptide fractions exhibited higher oxygen radical absorbance capacity as well as scavenging of 2,2-diphenyl-1-picrylhydrazyl, superoxide and hydroxyl radicals when compared to HPH. Radical scavenging activities of the fractionated peptides increased as content of hydrophobic amino acids or elution time was increased, with the exception of hydroxyl radical scavenging that showed decreased trend. Glutathione (GSH), HPH and the RP-HPLC peptide fractions possessed low ferric ion reducing ability but all had strong (>60 %) metal chelating activities. Inhibition of linoleic acid oxidation by some of the HPH peptide fractions was higher at 1 mg/ml when compared to that observed at 0.1 mg/ml peptide concentration. Peptide separation resulted in higher concentration of some hydrophobic amino acids (especially proline, leucine and isoleucine) in the fractions (mainly F5 and F8) when compared to HPH. The elution time-dependent increased concentrations of the hydrophobic amino acids coupled with decreased levels of positively charged amino acids may have been responsible for the significantly higher (p < 0.05) antioxidant properties observed for some of the peptide fractions when compared to the unfractionated HPH. In conclusion, the antioxidant activity of HPH after simulated GIT digestion is mainly influenced by the amino acid composition of some of its peptides.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge