English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Forensic Science, Medicine, and Pathology 2018-12

Rhabdomyolysis observed at forensic autopsy: a series of 52 cases.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hsuan-Yun Hu
Shyh-Yuh Wei
Chih-Hsin Pan

Keywords

Abstract

Rhabdomyolysis is characterized by skeletal muscle injury resulting in the release of intracellular proteins (such as myoglobin) and electrolytes into the blood circulation, which cause acute kidney injury, myoglobinuria and electrolyte imbalances. Clinical diagnosis of rhabdomyolysis is made on the basis of biochemical analysis; however, for forensic autopsies, biochemical data are often not available, and it is necessary to diagnose rhabdomyolysis via histopathological examinations. This study analyzed 52 cases with rhabdomyolysis and applied myoglobin immunohistochemistry to kidney, urine and blood samples. We found that blunt force injuries were the most common cause of rhabdomyolysis across all age groups, and drugs were the second most common cause. The drugs included ketamines, amphetamines, synthetic cathinones, entheogens, benzodiazepines, opioid analgesics, and anesthesia. Less than 60% of our cases had biochemical data, including myoglobin (92.5~416,978 ng/mL), creatine kinase (220~774,015 U/L), potassium (1.6~10.3 meq/L), calcium (2.7~29.2 mg/dL), and phosphorus (2.6~14.2 mg/dL). In the kidney tissue sections, we found that 95% of the rhabdomyolysis cases were positive for myoglobin immunohistochemistry and that 96% were associated with acute tubular necrosis. Our findings describe the features of fatal rhabdomyolysis in a large series and suggest that myoglobin immunohistochemistry can be used in post-mortem blood and urine cell blocks to detect myoglobin.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge