English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytochemistry 2018-Nov

Salvia verticillata: Linking glandular trichomes, volatiles and pollinators.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Claudia Giuliani
Roberta Ascrizzi
Daniela Lupi
Giacomo Tassera
Laura Santagostini
Manuela Giovanetti
Guido Flamini
Gelsomina Fico

Keywords

Abstract

Plants have developed a plethora of signals to interact with other organisms, finally building up a sophisticate language for communication. In this context, we investigated Salvia verticillata L. (Lamiaceae), with the primary goal to link secondary metabolites and actual biotic relationships. We specifically analysed the volatile organic compounds (VOC) spontaneously emitted by leaves and flowers and determined the composition of the essential oils obtained from the aerial parts across 2015 and 2016. We merged information of chemical analyses to a micromorphological investigation on the glandular indumentum and to focal observations on the pollinator assemblage. The VOC profiles were highly variable, with the floral bouquet being the most complex. Flowers and leaves showed 37 and 20 exclusive compounds, dominated by 1,8-cineole (10.4%) and germacrene D (38.4%), respectively. Sesquiterpene hydrocarbons prevailed (83.3% leaves; 73.7% flowers) and 19 common compounds were detected. The oil profiles proved to be consistent across the two years: sesquiterpene hydrocarbons invariably dominated, with germacrene D, bicyclogermacrene and β-caryophyllene as main compounds. The whole plant epidermis is thickly covered by two types of glandular hairs: peltates and small capitates, both responsible for the synthesis of terpenes, finally resulting in the VOC emission and in the essential oil production. S. verticillata attracted mainly bees belonging to two functional groups: medium-sized and large bees, notwithstanding the small size of its flowers. At the site, Apis mellifera and different Bombus species were recorded, mainly interested in feeding on nectar. The literature survey on the isolated volatile compounds confirmed the hypotheses on the seduction strategies towards Apoidea.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge