English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemosphere 2019-Jul

Specific metabolism related to sulfonamide tolerance and uptake in wetland plants.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yiping Tai
Nora Tam
Weifeng Ruan
Yufen Yang
Yang Yang
Ran Tao
Jingfan Zhang

Keywords

Abstract

Wetland plants are proven to perform well in water treatment. However, the phytoremediation capability of wetland plants for antibiotics, especially the uptake and metabolism involved in vivo, is poorly understood. In this study, we investigated the removal, uptake, and specific metabolism by Canna indica and Iris pseudacorus of five sulfonamides (SAs) using hydroponic experiments for seven days. The removal of SAs ranged from 15.2% to 98.4% in the planted groups, whereas that in the unplanted control group was much lower (12.6%-39.9%). The accumulation of SAs in plants was in a concentration-dependent manner via an active process and is not a major removal mechanism (constituted 0.31%-3.62% of the total removal load in plant system). The results also showed differences in the removal and accumulation by plant species of SAs. The acetyl conjugates (N-acetyl SA) were formed, which significantly enhanced the uptake of SAs (P < 0.001) except sulfapyridine. The concentrations of N-acetyl SA accounted for only 0.4%-23.8% of the total SAs distribution in plants, suggesting the involvement of other metabolism pathways. Methylation and oxidation metabolites were identified in plant tissues and no SA-induced growth stress occurred, revealing that antibiotic metabolism in vivo should be associated with the ability of wetland plants to accumulate antibiotic and tolerate antibiotic stress.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge