English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Botany 2012-Sep

The Arabidopsis organelle-localized glycyl-tRNA synthetase encoded by EMBRYO DEFECTIVE DEVELOPMENT1 is required for organ patterning.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Alexis Moschopoulos
Paul Derbyshire
Mary E Byrne

Keywords

Abstract

Leaves develop as planar organs, with a morphology that is specialized for photosynthesis. Development of a planar leaf requires genetic networks that set up opposing adaxial and abaxial sides of the leaf, which leads to establishment of dorsoventral polarity. While many genes have been identified that regulate adaxial and abaxial fate there is little information on how this is integrated with cellular function. EMBRYO DEFECTIVE DEVELOPMENT1 (EDD1) is a nuclear gene that encodes a plastid and mitochondrial localized glycyl-tRNA synthetase. Plants with partial loss of EDD1 function have changes in patterning of margin and distal regions of the leaf. In combination with mutations in the MYB domain transcription factor gene ASYMMETRIC LEAVES1 (AS1), partial loss of EDD1 function results in leaves with reduced adaxial fate. EDD1 may influence leaf dorsoventral polarity through regulating the abaxial fate genes KANADI1 (KAN1) and ETTIN (ETT)/AUXIN RESPONSE FACTOR3 (ARF3) since these genes are upregulated in the edd1 as1 double mutant. SCABRA3 (SCA3), a nuclear gene that encodes the plastid RNA polymerase is also required for leaf adaxial fate in the absence of AS1. These results add a novel component to networks of genetic regulation of leaf development and suggest that organelles, particularly plastids, are required in leaf patterning. Potentially, signalling from organelles is essential for coordination of different cell fates within the developing leaf.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge