English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Advances in Experimental Medicine and Biology 2018

The Neuropathology of Spinocerebellar Ataxia Type 3/Machado-Joseph Disease.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Arnulf H Koeppen

Keywords

Abstract

Spinocerebellar ataxia type 3 (SCA-3)/Machado-Joseph disease (MJD), the most common autosomal dominant ataxia, affects many regions of the brain and spinal cord. Similar to SCA-1, SCA-2, SCA-6, SCA-7, and SCA-17, the mutation consists of a pathogenic translated cytosine-adenine-guanine (CAG) trinucleotide repeat expansion. Almost invariably, the substantia nigra and the dentate nucleus of the cerebellum bear the brunt of the disease, and these lesions account for the Parkinsonian and ataxic phenotypes. Lesions of motor nuclei in the brain stem cause the complex disturbance of ocular motility and weakness of the tongue. Atrophy of the basis pontis is common, and polyglutamine-positive neuronal intranuclear inclusion bodies are most readily found in the pontine gray. Abnormalities of basal ganglia, thalamus, spinal cord, dorsal root ganglia, and sensory peripheral nerves are more variable. This report of the main neuropathological lesions is based on the study of 12 genetically confirmed autopsy cases of SCA-3/MJD. In the cerebellum, all layers of the cortex remain normal, but the dentate nucleus exhibits neuronal loss and a peculiar proliferation of synaptic terminals termed grumose regeneration. The clusters surrounding residual neuronal cell bodies and dendrites are interpreted as a response to loss of γ-aminobutyric acid (GABA)-A-receptors and lack of gephyrin, a protein that accomplishes the proper positioning of GABA-A- and glycine receptors. At the spinal level, dorsal root ganglia reveal proliferation of satellite cells, active neuronal destruction, and residual nodules. The spinal cord shows total or subtotal loss of neurons in the dorsal nuclei, anterior horn cell atrophy, and variable long tract degeneration. While misfolding of ataxin-3 due to overly long polyglutamine stretches is a critical contributor to the pathogenesis of SCA-3/MJD, the great neuropathological complexity of the disorder remains largely unexplained.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge