English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Life Sciences 2002-Dec

The botanical extracts of Achyrocline satureoides and Ilex paraguariensis prevent methylglyoxal-induced inhibition of plasminogen and antithrombin III.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
A Gugliucci
T Menini

Keywords

Abstract

Endogenously produced dicarbonyls, such as methylglyoxal (MG), are involved in advanced glycation end-product formation and thus linked to the pathophysiology of diabetic chronic complications. While the search for synthetic new antiglycation agents continues, little attention has been paid to putative antiglycation agents in natural compounds. Given the link between glycation and oxidation, in this work, we study the effects of methylglyoxal on two model systems; plasminogen and antithrombin III (AT III), then we set out to unravel a possible antiglycation effect for extracts of the flavonoid-rich common herbal species Achyrocline satureoides (AS) and Ilex paraguariensis (IP). Using SAR-PRO-ARG-pNA as a specific thrombin substrate, we show that incubation of plasma with MG decreases heparin activation of AT III by up to a 70%, in a dose-dependent manner. A parallel dose-dependent decrease in plasminogen activity reaching more than 50% was shown using D-BUT-CHT-lys-pNA as a plasmin-specific substrate. Extracts of AS and IP display a dose dependent inhibition of the action of the dicarbonyl, already significant at a 1/100 dilution of the herbal infusions. The inhibition was comparable to that obtained by using millimolar concentrations of known AGE inhibitors such as aminoguanidine and carnosine as well as micromolar concentrations of the antioxidant ascorbic acid. We believe our system of whole plasma glycation over 16 h with micromolar concentrations of MG, coupled with the measurement of activities of plasminogen and AT III by specific substrates provides a straightforward, practical method for monitoring the action of putative antiglycation agents. If predictably milder glycated forms of AT III and plasminogen were to be secreted in vivo, the loss of activities shown here could act synergistically to generate hyperthrombicity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge