English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Insect Biochemistry and Molecular Biology 2007-Jan

The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Mika Zagrobelny
Søren Bak
Claus Thorn Ekstrøm
Carl Erik Olsen
Birger Lindberg Møller

Keywords

Abstract

Zygaena larvae sequester the cyanogenic glucosides linamarin and lotaustralin from their food plants (Fabaceae) as well as carry out de novo biosynthesis of these compounds. In this study, Zygaena filipendulae were reared on wild-type Lotus corniculatus and wild-type and transgenic L. japonicus plants with differing content and ratios of the cyanogenic glucosides linamarin and lotaustralin and of the cyanoalkenyl glucosides rhodiocyanoside A and D. LC-MS analyses, free choice feeding experiments and developmental studies were used to examine the effect of varying content and ratios of these secondary metabolites on the feeding preferences, growth and development of Z. filipendulae. Larvae reared on cyanogenic L. corniculatus developed faster compared to larvae reared on L. japonicus although free choice feeding trials demonstrated that the latter plant source was the preferred food plant. Larvae reared on acyanogenic L. corniculatus showed decelerated development. Analysis of different life stages and tissues demonstrate that Z. filipendulae strive to maintain certain threshold content and ratios of cyanogenic glucosides regardless of the composition of the food plants. Despite this, the ratios of cyanogenic glucosides in Z. filipendulae remain partly affected by the ratio of the food plant due to the high proportion of sequestering that takes place.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge