English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Movement Disorders 1993

The possible role of iron in the etiopathology of Parkinson's disease.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M B Youdim
D Ben-Shachar
P Riederer

Keywords

Abstract

The identification of 6-hydroxydopamine (6-OHDA) and N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as dopaminergic neurotoxins that can induce parkinsonism in humans and animals has contributed to a better understanding of Parkinson's disease (PD). Although the involvement of similar neurotoxins has been implicated in PD, the etiology of the disease remains obscure. However, the recently described pathology of PD supports the view for a state of oxidative stress in the substantia nigra (SN), resulting as a consequence of the selective accumulation of iron in SN zona compacta and within the melanized dopamine neurons. Whether iron is directly involved cannot be ascertained. Nevertheless, the biochemical changes due to oxidative stress resulting from tissue iron overload (siderosis) are similar to those now being identified in parkinsonian SN. These include the reduction of mitochondrial electron transport, complex I and III activities, glutathione peroxidase activity, glutathione (GSH) ascorbate, calcium-binding protein, and superoxide dismutase and increase of basal lipid peroxidation and deposition of iron. The participation of iron-induced oxygen free radicals in the process of nigrostriatal dopamine neuron degeneration is strengthened by recent studies in which the neurotoxicity of 6-OHDA has been linked to the release of iron from its binding sites in ferritin. This is further supported by experiments with the prototype iron chelator, desferrioxamine (Desferal), a free-radical inhibitor, which protects against 6-OHDA-induced lesions in the rat. Indeed, intranigral iron injection in rats produces a selective lesioning of dopamine neurons, resulting in a behavioral and biochemical parkinsonism.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge