English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Free Radical Biology and Medicine 2014-Apr

Therapeutic hypercapnia prevents inhaled nitric oxide-induced right-ventricular systolic dysfunction in juvenile rats.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Kristyn Dunlop
Kiranjot Gosal
Crystal Kantores
Julijana Ivanovska
Rupinder Dhaliwal
Jean-François Desjardins
Kim A Connelly
Amish Jain
Patrick J McNamara
Robert P Jankov

Keywords

Abstract

Chronic pulmonary hypertension in the neonate and infant frequently presents with right-ventricular (RV) failure. Current clinical management may include protracted treatment with inhaled nitric oxide (iNO), with the goal of reducing RV afterload. We have previously reported that prolonged exposure to iNO causes RV systolic dysfunction in the chronic hypoxia-exposed juvenile rat, which was prevented by a peroxynitrite decomposition catalyst. Given that inhalation of CO2 (therapeutic hypercapnia) may limit oxidative stress and upregulated cytokine expression in the lung and other organs, we hypothesized that therapeutic hypercapnia would attenuate cytokine-mediated nitric oxide synthase (NOS) upregulation, thus limiting peroxynitrite generation. Sprague-Dawley rat pups were exposed to chronic hypoxia (13% O2) from postnatal day 1 to 21, while receiving iNO (20 ppm) from day 14 to 21, with or without therapeutic hypercapnia (10% CO2). Therapeutic hypercapnia completely normalized RV systolic function, RV hypertrophy, and remodeling of pulmonary resistance arteries in animals exposed to iNO. Inhaled nitric oxide-mediated increases in RV peroxynitrite, apoptosis, and contents of tumor necrosis factor (TNF)-α, interleukin (IL)-1α, and NOS-2 were all attenuated by therapeutic hypercapnia. Inhibition of NOS-2 activity with 1400 W (1 mg/kg/day) prevented iNO-mediated upregulation of peroxynitrite and led to improved RV systolic function. Blockade of IL-1 receptor signaling with anakinra (500 mg/kg/day) decreased NOS-2 content and had similar effects compared to NOS-2 inhibition on iNO-mediated effects, whereas blockade of TNF-α signaling with etanercept (0.4 mg/kg on alternate days) had no effects on these parameters. We conclude that therapeutic hypercapnia prevents the adverse effects of sustained exposure to iNO on RV systolic function by limiting IL-1-mediated NOS-2 upregulation and consequent nitration. Therapeutic hypercapnia also acts synergistically with iNO in normalizing RV hypertrophy, vascular remodeling, and raised pulmonary vascular resistance secondary to chronic hypoxia.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge