English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Annals of the New York Academy of Sciences 2003-Jun

Transgenic models of alpha-synuclein pathology: past, present, and future.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Makoto Hashimoto
Edward Rockenstein
Eliezer Masliah

Keywords

Abstract

Accumulation and toxic conversion to protofibrils of alpha-synuclein has been associated with neurological disorders such as Parkinson's disease (PD), Lewy body disease, multiple system atrophy, neurodegeneration with brain iron accumulation type 1, and Alzheimer's disease. In recent years, modeling these disorders in transgenic (tg) mice and flies has helped improve understanding of the pathogenesis of these diseases and has established the basis for the development of new experimental treatments. Overexpression of alpha-synuclein in tg mice in a region- and cell-specific manner results in degeneration of selective circuitries accompanied by motor deficits and inclusion formation similar to what is found in PD and related disorders. Furthermore, studies in singly and doubly tg mice have shown that toxic conversion and accumulation can be accelerated by alpha-synuclein mutations associated with familial parkinsonism, by amyloid beta peptide 1-42 (Abeta 1-42), and by oxidative stress. In contrast, molecular chaperones such as Hsp70 and close homologues such as alpha-synuclein have been shown to suppress toxicity. Similar studies are underway to evaluate the effects of other modifying genes that might play a role in alpha-synuclein ubiquitination. Among them considerable interest has been placed on the role of molecules associated with familial parkinsonism (Parkin, UCHL-1). Furthermore, studying the targeted overexpression of alpha-synuclein and other modifier genes in the nigrostriatal and limbic system by using regulatable promoters, lentiviral vectors, and siRNA will help improve understanding of the molecular mechanisms involved in selective neuronal vulnerability, and it will aid the development of new treatments.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge