English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
The American journal of physiology 1990-Mar

Unstimulated force during hypoxia of rat cardiac muscle: stiffness and calcium dependence.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
W J Leijendekker
W D Gao
H E ter Keurs

Keywords

Abstract

The stiffness of rat cardiac trabeculae was measured in vitro to distinguish between an increase in unstimulated force (Fu) caused by rapid cycling of cross bridges or caused by rigor bridges during hypoxia. The force was measured with a strain gauge, the sarcomere length was determined by laser diffraction techniques, and muscle length was controlled by means of a motor. Stiffness was analyzed by using small (less than 1% of muscle length) sinusoidal length perturbations of 1 and 100 Hz. The stiffness at 100 Hz increased linearly with force during tetani at a varied [Sr2+] (0.25-10 mM) in the Krebs-Henseleit (K-H) buffer, but remained virtually unchanged at 1 Hz. In contrast, the stiffness of both the passive muscle and the muscle exposed to either CN- or to PO2 less than 1.5 mmHg up to development of maximal Fu (Fumax) was similar at 1- and 100-Hz perturbations. Less profound hypoxia (PO2 6-10 mmHg) resulted in spontaneous sarcomere activity during the rise in Fu, and an increase in the ratio of stiffness at 100 Hz to stiffness at 1 Hz was detected. When oxidative phosphorylation was inhibited by CN- (2 mM) while the muscle was stimulated in the absence of both Ca2+ and Na+ (choline+substituted), the addition of Na+ at the time at which Fu had reached 30-40% of Fumax did not affect the rate of rise of Fu. These results show that the development of Fu during more complete anoxia in rat trabeculae is completely due to the formation of rigor links and that Ca2(+)-dependent cross-bridge activation can contribute to the rise in Fu during less severe hypoxia.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge