English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Stroke 1988-Jul

Vascular response to carbon dioxide in areas with and without diaschisis in patients with small, deep hemispheric infarction.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
T Takano
K Nagatsuka
Y Ohnishi
Y Takamitsu
H Matsuo
M Matsumoto
K Kimura
T Kamada

Keywords

Abstract

The reactivity of cerebral blood vessels to changes in PaCO2 in areas of the cerebral cortex with or without diaschisis was investigated in 13 patients in a subacute or chronic stage after a small capsular infarct. A focal area of hypoperfusion (area of diaschisis) was detected in the ipsilateral sensorimotor cortex in each patient. Hyperventilation caused a significant reduction of regional cerebral blood flow in the area without diaschisis and only a tendency for regional cerebral blood flow to decrease in the area with diaschisis; CO2 inhalation induced a slight increase in regional cerebral blood flow in the area without diaschisis and a significant increase in regional cerebral blood flow in the area with diaschisis. Regional cerebral blood flow reactivity to hypocapnia was significantly less in the area with diaschisis than in the area without, whereas the hypercapnic response was more marked in the area with diaschisis than in the area without. Our results suggest that in the area with diaschisis, the arterioles may be abnormally vasoconstricted at rest such that they cannot constrict further in response to hypocapnia but can dilate more during hypercapnia than in the area without diaschisis. This excessive resting vasoconstriction may result from decreased tissue elaboration of CO2 due to local decrease of metabolic function.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge