English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of neurology 2010-Feb

Ventilatory and cardiovascular responses to hypercapnia and hypoxia in multiple-system atrophy.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Axel Lipp
James D Schmelzer
Phillip A Low
Bruce D Johnson
Eduardo E Benarroch

Keywords

Abstract

BACKGROUND

Loss of medullary sympathoexcitatory neurons may contribute to baroreflex failure, leading to orthostatic hypotension in multiple-system atrophy (MSA). The cardiovascular responses to chemoreflex activation in MSA have not been explored to date.

OBJECTIVE

To determine whether ventilatory and cardiovascular responses to hypercapnia and hypoxia during wakefulness are systematically impaired in MSA.

METHODS

Case-control study.

METHODS

Mayo Clinic, Rochester, Minnesota.

METHODS

Sixteen patients with probable MSA (cases) and 14 age-matched control subjects (controls).

METHODS

Minute ventilation, blood pressure, and heart rate responses to hypercapnia and hypoxia during wakefulness. Hypercapnia was induced by a rebreathing technique and was limited to a maximal expiratory partial pressure of carbon dioxide of 65 mm Hg. Hypoxia was induced by a stepwise increase in inspiratory partial pressure of nitrogen and was limited to a minimal arterial oxygen saturation of 80%. Ventilatory responses were assessed as slopes of the regression line relating minute ventilation to changes in arterial oxygen saturation and partial pressure of carbon dioxide.

RESULTS

In cases, ventilatory responses to hypercapnia and hypoxia were preserved, despite the presence of severe autonomic failure, while cardiovascular responses to these stimuli were impaired. Among cases, hypercapnia elicited a less robust increase in arterial pressure than among controls, and hypoxia elicited a depressor response rather than the normal pressor responses (P < .001 for both).

CONCLUSIONS

Ventilatory responses to hypercapnia and hypoxia during wakefulness may be preserved in patients with MSA, despite the presence of autonomic failure and impaired cardiovascular responses to these stimuli. A critical number of chemosensitive medullary neurons may need to be lost before development of impaired automatic ventilation during wakefulness in MSA, whereas earlier loss of medullary sympathoexcitatory neurons may contribute to the impaired cardiovascular responses in these patients.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge