English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Materials Chemistry B 2019-Jan

A multifunctional polymeric gene delivery system for circumventing biological barriers.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Huajie Zhu
Jinxia An
Chengcai Pang
Shuai Chen
Wei Li
Jinbiao Liu
Qixian Chen
Hui Gao

Keywords

Abstract

Aiming to circumvent the pre-defined obstacles in the journey of gene transportation, we attempt to compile a number of functional components into a tandem tri-copolymeric material. Herein, a β-cyclodextrin-functionalized poly(glycerol methacrylate) (PG) segment and a quaternary amine-functionalized poly[(2-acryloyl)-ethyl-(p-boronic acid pinacol ester benzyl)diethylammonium bromide] (BP) segment are attached to complex DNA to formulate a nanoscaled delivery system based on electrostatic interactions. The formulated polyplex is strengthened by a hydrophobic poly[2-(5,5-dimethyl-1,3-dioxan-2-yloxy)ethyl acrylate] (PDM) segment, affording improved complex stability. To retrieve the polyplex from entrapment by acidic and digestive endo/lysosomes, light-stimulated ROS-producing 4,4'-(1,2-diphenylethene-1,2-diyl)bis(1,4-phenylene)diboronic acid (TPE) is installed in the cavities of cyclodextrin. Upon light irradiation, TPE is triggered to produce abundant ROS, not only committing disruption of the endo/lysosome membrane for polyplex escape from the entrapment but also inducing the transformation of the positively charged BP to become negatively charged. This charge conversion behavior, together with the transformation of PDM to be hydrophilic and responsive to an acidic endosome pH gradient (pH 5.0) is envisioned to induce the dissociation of the electrostatically-assembled polyplex, thereby facilitating the release of the DNA payload for the subsequent transcription machinery. This strategically-tailored and easily synthesized tandem tri-copolymer exhibits excellent gene expression activity and provides a facile response to endogenous and exogenous stimuli for active gene expression.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge