English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Developmental Biology 2020-Aug

Anatomical and genetic bases underlying convergent evolution of fleshy and dry dehiscent fruits in Cestrum and Brugmansia (Solanaceae)

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Natalí Hernández-Ciro
Natalia Pabón-Mora

Keywords

Abstract

Background: The mechanisms controlling evolutionary shifts between dry and fleshy fruits in angiosperms are poorly understood. In Solanaceae, Cestrum and Brugmansia represent cases of convergent evolution of fleshy and dry fruits, respectively. Here we study the anatomical and genetic bases of the independent origin of fleshy fruits in Cestrum and the reversion to dry dehiscent fruits in Brugmansia. We also characterize the expression of candidate fruit development genes, including ALCATRAZ/SPATULA, FRUITFULL, HECATE1/2/3, REPLUMLESS and SHATTERPROOF.

Methods: We identify anatomical changes to establish developmental stages in the ovary-to-fruit transition in Cestrum nocturnum and Brugmansia suaveolens. We generate reference transcriptomes for both species, isolate homologs for all genes in the fruit genetic regulatory network (GRN) and perform gene expression analyses for ALC/SPT, FUL, HEC1/2/3, RPL and SHP throughout fruit development. Finally, we compare our results to expression patterns found in typical capsules of Nicotiana tabacum and berries of Solanum lycopersicum available in public repositories.

Results: We have identified homologous, homoplasious and unique anatomical features in C.nocturnum and B. suaveolens fruits, resulting in their final appearance. Expression patterns suggest that FUL, SHP and SPT might control homologous characteristics, while ALC and RPL likely contribute to homoplasious anatomical features.

Conclusions: The convergent anatomical features in Cestrum and Brugmansia fruits are likely the result of changes in ALC and RPL expression patterns. The fruit GRN changes considerably in these genera when compared to typical capsules and berries of Solanaceae, particularly in B. suaveolens, where expression of FUL2 and RPL1 is lacking.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge