English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Saudi Journal of Biological Sciences 2020-Apr

Cancer inhibition mechanism of lung cancer mouse model based on dye trace method.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Wei Zhang
Hongyan Shu
Lixin Fang
Ning Tang
Yucai Li
Bingrong Guo
Fanhui Meng

Keywords

Abstract

To minimize the incidence and mortality of cancer, dye trace method was used to explore the mechanism of drug inhibition. 60 mice were selected as the research objects and randomly divided into five groups: model group, shikonin group, aconitine group, notoginsenoside R1 group, and compound group. When establishing the model, begin to administrate the medicine by gavage. The permeability of lung barrier was measured, and H.E staining, immunohistochemical staining, and Western blot test were carried out. The results showed that the mice in model group had decreased autonomic activity, increased permeability of the lung barrier, white nodules on the lung tissue, decreased protein expression related to cell proliferation and differentiation, and decreased protein expression associated with cell proliferation and differentiation, increased expression of related proteins in cancer stem cells, and low level of cell-linked communication. And the incidence of lung cancer in the model group mice was 100%. The histopathological changes in mice were improved to varying degrees after the intervention of the three drugs. Especially in the compound group, the incidence of lung cancer decreased to 8.3%. This study demonstrated that the combination of shikonin, aconitine and notoginsenoside R1 had a good anti-cancer effect, which provided a theoretical basis for clinical research.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge