English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Photochemistry and Photobiology B: Biology 2020-Jul

Preparation, characterization and anti-cancer activity of graphene oxide-‑silver nanocomposite

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Arokia Mariadoss
Kandasamy Saravanakumar
Anbazhagan Sathiyaseelan
Myeong-Hyeon Wang

Keywords

Abstract

This work reported the preparation, characterization, cytotoxicity of green synthesized Lespedeza cuneate mediated silver nanoparticles (Lc-AgNPs) and graphene oxide‑silver nanocomposite (GO-AgNComp) using Lc-AgNPs. The UV absorption spectrum at 419 nm indicated the successful formation of GO-AgNComp. The TEM analysis displayed the thin sheet of graphene decorated Lc-AgNPs in GO-AgNComp. Zeta potential was -13.2 mV for Lc-AgNPs and -30.5 mV for GO-AgNComp. The photothermal conversion efficiency was calculated as 31.09% for GO-AgNComp. The negatively charged zeta potential of GO-AgNComp enhanced its cellular penetration through enhanced permeability and retention (EPR) effect. The near-infrared laser (NIR) induced the anticancer activity of Lc-AgNPs and GO-AgNComp in human lung cancer cells (A549) and brain tumour (LN229). The results indicated that about 50% of A549 cells and LN229 cells were ablated by treatment of 24.73 ± 2.98 μg/mL and 27.34 ± 1.62 μg/mL of Lc-AgNPs, as well by 15.46 ± 2.31 μg/mL and 20.95 ± 1.35 μg/mL of GO-AgNComp respectively. Moreover, GO-AgNComp was not cytotoxic to normal mouse fibroblast cells (NIH3T3), but it caused the cancer cell death in A549 and LN229 through ROS generation, nuclear damage, and mitochondrial membrane potential (∆ψm) loss. This work reported the anticancer potential of GO-AgNComp, which deserves further study on the molecular elucidation of GO-AgNComp mediated human lung and tumour therapy.

Keywords: Graphene oxide; Lespedeza cuneata; Nanocomposite; Photothermolysis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge