English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of the American Chemical Society 2020-Sep

Synthetic, Mechanistic and Biological Interrogation of Ginkgo biloba Chemical Space en route to (-)-Bilobalide

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Robert Demoret
Meghan Baker
Masaki Ohtawa
Shuming Chen
Ching-Ching Lam
Sophia Khom
Marisa Roberto
Stefano Forli
K Houk
Ryan Shenvi

Keywords

Abstract

Here we interrogate the structurally dense (1.63 mcbits/Å3) GABAA receptor antagonist bilobalide, intermediates en route to its synthesis and related mechanistic questions. 13C isotope labeling identifies an unexpected bromine migration en route to an α-selective, catalytic asymmetric Reformatsky reaction, ruling out an asymmetric allylation pathway. Experiment and computation converge on the driving forces behind two surprising observations. First, an oxetane acetal persists in concen-trated mineral acid (1.5 M DCl in THF-d8/D2O); its longevity is correlated to destabilizing steric clash between substituents upon ring-opening. Second, a regioselective oxidation of des-hydroxybilobalide is found to rely on lactone acidification through lone-pair delocalization, which leads to extremely rapid intermolecular enolate equilibration. We also establish equivalent effects of (-)-bilobalide and the nonconvulsive sesquiterpene (-)-jiadifenolide on action potential-independent in-hibitory currents at GABAergic synapses, using (+)-bilobalide as a negative control. The high information density of bilob-alide distinguishes it from other scaffolds, and may characterize natural product (NP) space more generally. Therefore, we also include a Python script to quickly (ca. 132,000 molecules/ minute) calculate information content (Böttcher scores), which may prove helpful to identify important features of NP space.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge