English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

dhurrin/sorghum

The link is saved to the clipboard
ArticlesClinical trialsPatents
Page 1 from 63 results

Down-Regulation of CYP79A1 Gene Through Antisense Approach Reduced the Cyanogenic Glycoside Dhurrin in [Sorghum bicolor (L.) Moench] to Improve Fodder Quality.

Only registered users can translate articles
Log In/Sign up
A major limitation for the utilization of sorghum forage is the production of the cyanogenic glycoside dhurrin in its leaves and stem that may cause the death of cattle feeding on it at the pre-flowering stage. Therefore, we attempted to develop transgenic sorghum plants with reduced levels of

Relationship between contents of leucoanthocyanidin and dhurrin in sorghum leaves.

Only registered users can translate articles
Log In/Sign up
Flag leaves of 'Colman' forage sorghum (Sorghum bicolor) contain at least 25 times as much leucoanthocyanidin (LAC) and approximately half as much of the cyanogenic glucoside, dhurrin, as do flag leaves of 'White Collier' forage sorghum. Assays of flag leaves from 119 F2 plants and 11 F5 lines from

Dhurrin-6'-glucoside, a cyanogenic diglucoside from Sorghum bicolor.

Only registered users can translate articles
Log In/Sign up
A novel cyanogenic diglucoside has been isolated from methanolic extracts of young seedlings of Sorghum bicolor. Its structure was established as dhurrin-6-glucoside from NMR, mass spectrometry and enzymatic hydrolysis data. Compared with dhurrin, which is the major cyanogenic glucoside in sorghum

The in vitro biosynthesis of dhurrin, the cyanogenic glycoside of Sorghum bicolor.

Only registered users can translate articles
Log In/Sign up
A microsomal fraction from seedlings of Sorghum bicolor (Linn) Moench has been shown to catalyze the conversion of L-tyrosine to p-hydroxymandelonitrile via p-hydroxyphenylacetaldoxime. This transformation is consistent with the general pathway for cyanogenic glycoside biosynthesis proposed on the

Substrate specificity of the cytochrome P450 enzymes CYP79A1 and CYP71E1 involved in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench.

Only registered users can translate articles
Log In/Sign up
The two multifunctional cytochrome P450 enzymes, CYP79A1 and CYP71E1, involved in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench have been characterized with respect to substrate specificity and cofactor requirements using reconstituted, recombinant enzymes and

The primary sequence of cytochrome P450tyr, the multifunctional N-hydroxylase catalyzing the conversion of L-tyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench.

Only registered users can translate articles
Log In/Sign up
The heme thiolate protein cytochrome P450tyr is a multifunctional N-hydroxylase converting L-tyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (Sibbesen et al. (1995) J. Biol. Chem. 270, 3506-3511). Using a polyclonal antibody

Localization of Cinnamic Acid 4-Monooxygenase and the Membrane-bound Enzyme System for Dhurrin Biosynthesis in Sorghum Seedlings.

Only registered users can translate articles
Log In/Sign up
The localization of three monooxygenase (hydroxylase) enzyme systems which occur in dark-grown seedlings of Sorghum bicolor has been studied. Cinnamic acid 4-hydroxylase (CAH) (trans-cinnamate 4-monooxygenase, EC 1.14.13.11), which has been increasingly utilized in plants as a marker for the

Leakage of Dhurrin and p-Hydroxybenzaldehyde from Young Sorghum Shoots Immersed in Various Solvents.

Only registered users can translate articles
Log In/Sign up
Spectral scanning was used to provide estimates of the leakage of the cyanogenic glucoside, dhurrin (p-hydroxy-[S]-mandelonitrile-beta-d-glucoside), and its metabolite, p-hydroxybenzaldehyde (p-HB), from young light-grown shoots of Atlas sorghum (Sorghum bicolor [L.] Moench) when these shoots were

Subcellular Localization of Dhurrin beta-Glucosidase and Hydroxynitrile Lyase in the Mesophyll Cells of Sorghum Leaf Blades.

Only registered users can translate articles
Log In/Sign up
Studies with purified mesophyll and epidermal protoplasts and bundle sheath strands have shown that the cyanogenic glucoside dhurrin (p-hydroxy-(S)-mandelonitrile-beta-d-glucoside) is localized in the epidermis of sorghum leaves whereas the enzymes involved in its degradation (dhurrin

Transgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in Dhurrin biosynthesis.

Only registered users can translate articles
Log In/Sign up
Novel cyanogenic plants have been generated by the simultaneous expression of the two multifunctional sorghum (Sorghum bicolor [L.] Moench) cytochrome P450 enzymes CYP79A1 and CYP71E1 in tobacco (Nicotiana tabacum cv Xanthi) and Arabidopsis under the regulation of the constitutive 35S promoter.

Characterization of beta-glucosidases with high specificity for the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) moench seedlings.

Only registered users can translate articles
Log In/Sign up
Two beta-glucosidases exhibiting high specificity for the cyanogenic glucoside dhurrin have been purified to near homogeneity from seedlings of Sorghum bicolor. Dhurrinase 1 was isolated from shoots of seedlings grown in the dark. Dhurrinase 2 was isolated from the green shoots of young seedlings

Dhurrin metabolism in the developing grain of Sorghum bicolor (L.) Moench investigated by metabolite profiling and novel clustering analyses of time-resolved transcriptomic data.

Only registered users can translate articles
Log In/Sign up
The important cereal crop Sorghum bicolor (L.) Moench biosynthesize and accumulate the defensive compound dhurrin during development. Previous work has suggested multiple roles for the compound including a function as nitrogen storage/buffer. Crucial for this function is the endogenous turnover of

Presence of the cyanogenic glucoside dhurrin in isolated vacuoles from sorghum.

Only registered users can translate articles
Log In/Sign up
Large numbers of vacuoles (10(6)-10(7)) have been isolated from Sorghum bicolor protoplasts and analyzed for the cyanogenic glucoside dhurrin. Leaves from light-grown seedlings were incubated for 4 hours in 1.5% cellulysin and 0.5% macerase to yield mesophyll protoplasts which then were recovered by

Label-free Raman hyperspectral imaging analysis localizes the cyanogenic glucoside dhurrin to the cytoplasm in sorghum cells.

Only registered users can translate articles
Log In/Sign up
Localisation of metabolites in sorghum coleoptiles using Raman hyperspectral imaging analysis was compared in wild type plants and mutants that lack cyanogenic glucosides. This novel method allows high spatial resolution in situ localization by detecting functional groups associated with cyanogenic

The biosynthetic gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor contains its co-expressed vacuolar MATE transporter.

Only registered users can translate articles
Log In/Sign up
Genomic gene clusters for the biosynthesis of chemical defence compounds are increasingly identified in plant genomes. We previously reported the independent evolution of biosynthetic gene clusters for cyanogenic glucoside biosynthesis in three plant lineages. Here we report that the gene cluster
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge