English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

dicumarol/zea mays

The link is saved to the clipboard
ArticlesClinical trialsPatents
4 results

Inhibitors of the plasma membrane redox system of Zea mays L. roots. The vitamin K antagonists dicumarol and warfarin.

Only registered users can translate articles
Log In/Sign up
The action of the 4-hydroxycoumarins dicumarol and warfarin, antagonists of probable vitamin K type components of the plasma membrane electron-transport system, on plasma membrane redox activity of intact maize roots was compared. Both effectors inhibited electron transfer to extracellular

Inhibition of trans-membrane hexacyanoferrate III reductase activity and proton secretion of maize (Zea mays L.) roots by thenoyltrifluoroacetone.

Only registered users can translate articles
Log In/Sign up
Intact plants can reduce external oxidants by an appearingly trans-membrane electron transport. In vivo an increase in net medium acidification accompanies the reduction of the apoplastic substrate. Up to now, several NAD(P)H dehydrogenases, b-type cytochromes, and a phylloquinone have been

Interaction between electron transport at the plasma membrane and nitrate uptake by maize (Zea mays L.) roots.

Only registered users can translate articles
Log In/Sign up
In the present study nitrate uptake by maize (Zea mays L.) roots was investigated in the presence or absence of ferricyanide (hexacyanoferrate III) or dicumarol. Nitrate uptake caused an alkalization of the medium. Nitrate uptake of intact maize seedlings was inhibited by ferricyanide while the

Purification, Characterization, and Submitochondrial Localization of the 32-Kilodalton NADH Dehydrogenase from Maize.

Only registered users can translate articles
Log In/Sign up
Plant mitochondria have the unique ability to directly oxidize exogenous NAD(P)H. We recently separated two NAD(P)H dehydrogenase activities from maize (Zea mays L.) mitochondria using anion-exchange (Mono Q) chromatography. The first peak of activity oxidized only NADH, whereas the second oxidized
Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge