Spanish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Molecular Biology 2009-Feb

A mechanistic model of the cysteine synthase complex.

Solo los usuarios registrados pueden traducir artículos
Iniciar sesión Registrarse
El enlace se guarda en el portapapeles.
Anna Feldman-Salit
Markus Wirtz
Ruediger Hell
Rebecca C Wade

Palabras clave

Abstracto

Plants and bacteria assimilate and incorporate inorganic sulfur into organic compounds such as the amino acid cysteine. Cysteine biosynthesis involves a bienzyme complex, the cysteine synthase (CS) complex. The CS complex is composed of the enzymes serine acetyl transferase (SAT) and O-acetyl-serine-(thiol)-lyase (OAS-TL). Although it is experimentally known that formation of the CS complex influences cysteine production, the exact biological function of the CS complex, the mechanism of reciprocal regulation of the constituent enzymes and the structure of the complex are still poorly understood. Here, we used docking techniques to construct a model of the CS complex from mitochondrial Arabidopsis thaliana. The three-dimensional structures of the enzymes were modeled by comparative techniques. The C-termini of SAT, missing in the template structures but crucial for CS formation, were modeled de novo. Diffusional encounter complexes of SAT and OAS-TL were generated by rigid-body Brownian dynamics simulation. By incorporating experimental constraints during Brownian dynamics simulation, we identified complexes consistent with experiments. Selected encounter complexes were refined by molecular dynamics simulation to generate structures of bound complexes. We found that although a stoichiometric ratio of six OAS-TL dimers to one SAT hexamer in the CS complex is geometrically possible, binding energy calculations suggest that, consistent with experiments, a ratio of only two OAS-TL dimers to one SAT hexamer is more likely. Computational mutagenesis of residues in OAS-TL that are experimentally significant for CS formation hindered the association of the enzymes due to a less-favorable electrostatic binding free energy. Since the enzymes from A. thaliana were expressed in Escherichia coli, the cross-species binding of SAT and OAS-TL from E. coli and A. thaliana was explored. The results showed that reduced cysteine production might be due to a cross-binding of A. thaliana OAS-TL with E. coli SAT. The proposed models of the enzymes and their complexes provide mechanistic insights into CS complexation.

Únete a nuestra
página de facebook

La base de datos de hierbas medicinales más completa respaldada por la ciencia

  • Funciona en 55 idiomas
  • Curas a base de hierbas respaldadas por la ciencia
  • Reconocimiento de hierbas por imagen
  • Mapa GPS interactivo: etiquete hierbas en la ubicación (próximamente)
  • Leer publicaciones científicas relacionadas con su búsqueda
  • Buscar hierbas medicinales por sus efectos.
  • Organice sus intereses y manténgase al día con las noticias de investigación, ensayos clínicos y patentes.

Escriba un síntoma o una enfermedad y lea acerca de las hierbas que podrían ayudar, escriba una hierba y vea las enfermedades y los síntomas contra los que se usa.
* Toda la información se basa en investigaciones científicas publicadas.

Google Play badgeApp Store badge