Changes in amino acid transport during red cell maturation.
Palabras clave
Abstracto
We studied amino acid transport in sheep red blood cells (RBCs) as a function of cell maturation. Transport of amino acids is decreased strikingly in the mature mammalian RBC compared to the immature reticulocyte. Blood obtained 5-6 days after massive bleeding was fractionated on dextran gradients. In the mature erythrocyte amino acids are taken up only slowly, and in the normal experimental interval (60 min) the concentration in the cell does not reach that of the medium. In contrast, the reticulocyte-rich (top) fraction (50-90% reticulocyte) accumulates certain amino acids, particularly histidine, methionine, and leucine. The underlying process is ATP-independent and Na+-insensitive, and has properties consistent with exchange diffusion, i.e., accelerated uptake or efflux when unlabeled solute is present on the trans side. The process is apparent not only in intact cells but also in resealed ghosts. The decrease in activity of amino acid transport is a function of red cell maturation. Thus it can be shown that (a) separation of cells according to their density 1, 2, and 3 weeks after bleeding leads to progressively lower amino acid transport activity with increasing cell density; and (b) during in vitro long-term incubation at 37 degrees C of reticulocyte-rich, unfractionated blood (5-10% reticulocytes), amino acid transport decreases while red cell integrity is maintained, as evidenced by the retention of a normal K+ gradient and the absence of hemolysis. The progressive loss is seen with resealed ghosts as well as with intact cells. Not all the amino acids examined participate in this exchange process. The most actively exchanged are histidine, leucine, methionine, and phenylalanine. Glycine, proline, arginine, and a-amino isobutyric acid do not participate in the exchange process.