Página 1 desde 17 resultados
Linamarase (EC 3.2.1.21) is a specialized β-glucosidase that hydrolyses the cyanogenic glucoside linamarin. Two clones of Trifolium repens L. derived from natural populations, of which one clone exhibited linamarase activity, were used in a comparative study to try to establish the localization of
The beta-glucosidase, linamarase, which specifically hydrolyzes cyanogenic substrates, linamarin and lotaustralin, in white clover, is synthesized in the early stages of leaf and seedling development in genetically competent plants. Plants, from natural populations, possessing at least one Li allele
Partially purified linamarase from Trifolium repens (genotype Lili acac) plants was kinetically characterized. Kinetic evidence was found to support the assumption that this cyanogenic beta-D-glucosidase has a broad substrate spectrum. p-Nitrophenyl-beta-D-xylopyranoside and
The nucleotide sequence and derived amino acid sequence of two different beta-glucosidase cDNA clones were determined. One clone (TRE104) was identified as the cyanogenic beta-glucosidase by homology with the N-terminal and internal peptide amino acid sequence of the purified enzyme. The biological
The cyanogenic polymorphism in Trifolium repens is caused by the variation in two genes, the interaction of which produces four distinct cyanotypes. Along the Atlantic coasts of Bretagne, T. repens is sometimes found in populations mixed with the related species Trifolium occidentale, although the
The cyanogenic beta-glucosidase (linamarase) of cassava is responsible for the first step in the sequential break-down of two related cyanoglucosides. Hydrolysis of these cyanoglucosides occurs following tissue damage and leads to the production of hydrocyanic acid. This mechanism is widely regarded
OBJECTIVE
The release of hydrogen cyanide (HCN) from injured plant tissue affects multiple ecological interactions. Plant-derived HCN can act as a defence against herbivores and also plays an important role in plant-pathogen interactions. Crucial for activity as a feeding deterrent is the amount of
Understanding the molecular evolution of genes that underlie intraspecific polymorphisms can provide insights into the process of adaptive evolution. For adaptive polymorphisms characterized by gene presence/absence (P/A) variation, underlying loci commonly show signatures of long-term balancing
The cyanogenic β-glucosidase (linamarase) was purified from white clover leaf tissue. The enzyme is a homodimer with a molecular weight of 105 300-103 400 daltons estimated from molecular exclusion chromatography. The effect of buffer ions on the pH optimum and charge properties of the enzyme are
The recurrent evolution of adaptive clines within a species can be used to elucidate the selective factors and genetic responses that underlie adaptation. White clover is polymorphic for cyanogenesis (HCN release with tissue damage), and climate-associated cyanogenesis clines have evolved throughout
The effect of the cyanogenic glucosides linamarin and lotaustralin and their hydrolyzing enzyme linamarase was studied in a B2 generation segregating for the genes Ac and Li. Plants containing the glucosides are protected against grazing by snails both in the seedling stage and as adult plants. In
The Li locus in white clover controls the presence of cyanogenic beta-glucosidase (linamarase) activity in leaf tissue, such that plants homozygous for the 'null' allele (li) have no linamarase activity in this tissue. The isolation of a cDNA clone from linamarase mRNA is described. The cDNA clone
White clover (Trifolium repens) is naturally polymorphic for cyanogenesis (hydrogen cyanide release following tissue damage). The ecological factors favouring cyanogenic and acyanogenic plants have been examined in numerous studies over the last half century, making this one of the best-documented
White clover is polymorphic for cyanogenesis, with both cyanogenic and acyanogenic plants occurring in nature. This chemical defense polymorphism is one of the longest-studied and best-documented examples of an adaptive polymorphism in plants. It is controlled by two independently segregating genes:
The cyanogenic polymorphism in Trifolium repens L. (white clover) has been used as the basis of a study of the genetic control of cyanogenesis. The Ac locus controls the presence of two cyanoglucosides in white clover. Biochemical characterization of cyanoglucoside biosynthesis in plants containing