10 resultados
The development of well-characterized rapid methodology for the extraction and gas chromatographic analysis of the cyanogenic glycosides linustatin and neolinustatin from flaxseed (Linum usitatissimum L.) is reported. Two quantitation methods using phenyl-beta-D-glucopyranoside as an internal
An ultra performance liquid chromatography electrospray ionization high-resolution mass spectrometry (UPLC/ESI-HRMS) method was developed and validated for simultaneous quantification of cyanogenic glycosides (CGs), [linustatin (LIS) and neolinustatin (NLIS)], and the main lignan,
This report describes a routine method taking less than 20 min to quantify cyanogenic glycosides such as linustatin and neolinustatin from flaxseeds (Linum usitatissimum L.) using 1H nuclear magnetic resonance. After manual dehulling, a higher linustatin content was shown in the almond fraction,
The absolute cyanide content of developing fruits was determined in Costa Rican wild lima beans (Phaseolus lunatus), oil flax (Linum usitatissimum), and bitter almonds (Prunus amygdalus). The cyanide potential (HCN-p) of the lima bean and the almond fruit began to increase shortly after anthesis and
Although high alpha-linolenic acid flaxseed (Linum usitatissimum) is one of the richest dietary sources of alpha-linolenic acid and is also a good source of soluble fibre mucilage, it is relatively unstudied in human nutrition. Healthy female volunteers consumed 50 g ground, raw flaxseed/d for 4
A reference method (higher accuracy) and a routine method (higher throughput) were developed for the extraction of cyanogenic glycosides from flaxseed. Conditions of (essentially) complete extraction were identified by comparing grinding methods and extraction solvent composition, and optimizing
Ten compounds were isolated from the 70% ethanol extract of linseed meal (Linum usitatissimum L) through a combination of various chromatographic techniques, including silica gel, macroporous adsorbent resin, Sephadex LH-20, and preparative HPLC. On the basis of spectroscopic data analysis, they
Flaxseed (Linum usitatissimum L.) meal contains cyanogenic glycosides (CGs) and the lignan secoisolariciresinol diglucoside (1). Gluten-free (GF) doughs and baked goods were produced with added flaxseed meal (20%, w/w) then 1, and CGs were determined in fortified flour, dough, and bread with storage
Three new cyanogenetic triglycosides linustatins A-C (1-3), and two new simple glycosides linustatins D and E (4 and 5) were isolated from the 70% ethanol extract of flaxseed meal (Linum usitatissimum L.). Their structures were elucidated on the basis of spectroscopic analysis and chemical evidence.
An integrated omics approach using genomics, transcriptomics, metabolomics (MALDI mass spectrometry imaging, MSI), and bioinformatics was employed to study spatiotemporal formation and deposition of health-protecting polymeric lignans and plant defense cyanogenic glucosides. Intact flax (Linum