Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Medical and Biological Engineering and Computing 2012-Mar

Robust extraction of P300 using constrained ICA for BCI applications.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Link salvestatakse lõikelauale
Ozair Idris Khan
Faisal Farooq
Faraz Akram
Mun-Taek Choi
Seung Moo Han
Tae-Seong Kim

Märksõnad

Abstraktne

P300 is a positive event-related potential used by P300-brain computer interfaces (BCIs) as a means of communication with external devices. One of the main requirements of any P300-based BCI is accuracy and time efficiency for P300 extraction and detection. Among many attempted techniques, independent component analysis (ICA) is currently the most popular P300 extraction technique. However, since ICA extracts multiple independent components (ICs), its use requires careful selection of ICs containing P300 responses, which limits the number of channels available for computational efficiency. Here, we propose a novel procedure for P300 extraction and detection using constrained independent component analysis (cICA) through which we can directly extract only P300-relevant ICs. We tested our procedure on two standard datasets collected from healthy and disabled subjects. We tested our procedure on these datasets and compared their respective performances with a conventional ICA-based procedure. Our results demonstrate that the cICA-based method was more reliable and less computationally expensive, and was able to achieve 97 and 91.6% accuracy in P300 detection from healthy and disabled subjects, respectively. In recognizing target characters and images, our approach achieved 95 and 90.25% success in healthy and disabled individuals, whereas use of ICA only achieved 83 and 72.25%, respectively. In terms of information transfer rate, our results indicate that the ICA-based procedure optimally performs with a limited number of channels (typically three), but with a higher number of available channels (>3), its performance deteriorates and the cICA-based one performs better.

Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge