Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

alginate/infarkt

Link salvestatakse lõikelauale
ArtiklidKliinilistes uuringutesPatendid
Leht 1 alates 99 tulemused
UNASSIGNED Cell therapy for heart disease has been proven safe and efficacious, despite poor cell retention in the injected area. Improving cell retention is hypothesized to increase the treatment effect. In the present study, human adipose-derived stromal cells (ASCs) were delivered in an in situ
The aim of the study was the testing of sustained intrapericardial delivery of vascular growth factors (GFs) from alginate beads on cryoinjury size and perfusion. In domestic pigs (15-20 kg, n = 21), the left ventricular (LV) anterolateral wall of exposed hearts was cryoinjured using an aluminum rod
Adverse cardiac remodeling and dysfunction after myocardial infarction (MI) is associated with (BioLineRx, BL-1040 myocardial implant) excessive damage to the extracellular matrix. Biomaterials, such as the in situ-forming alginate hydrogel, provide temporary support and attenuate these processes.

Local intramyocardial delivery of bioglass with alginate hydrogels for post-infarct myocardial regeneration

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Heart failure (HF) is a common and serious manifestation after myocardial infarction (MI). Despite their clinical importance, current treatments for MI still have several limitations. Revascularization has been proven to have positive effects on MI-induced damage. Currently biomaterial-based
BACKGROUND A new post-myocardial infarction (MI) therapy is injection of high-water-content polymeric biomaterial gels (hydrogels) into damaged myocardium to modulate cardiac negative remodeling and preserve heart function. METHODS We investigated the therapeutic potential of a novel gelatinized
Myocardial infarction (MI) is one of cardiovascular diseases that pose a serious threat to human health. The pathophysiology of MI is complex and contains several sequential phases including blockage of a coronary artery, necrosis of myocardial cells, inflammation, and myocardial fibrosis. Aiming at
Low circulating levels of insulin-like growth factor 1 (IGF-1) have been correlated with an increased risk for cardiovascular diseases in humans. In this work, an injectable alginate hydrogel containing silk fibroin (SF) microspheres with the capability to sustain the release of IGF-1 was prepared
OBJECTIVE This study sought to determine whether alginate biomaterial can be delivered effectively into the infarcted myocardium by intracoronary injection to prevent left ventricular (LV) remodeling early after myocardial infarction (MI). BACKGROUND Although injectable biomaterials can improve
OBJECTIVE This study investigates whether local sequential delivery of vascular endothelial growth factor-A(165) (VEGF-A(165)) followed by platelet-derived growth factor-BB (PDGF-BB) with alginate hydrogels could induce an angiogenic effect and functional improvement greater than single factors
Alginate biomaterial is widely utilized for tissue engineering and regeneration due to its biocompatibility, non-thrombogenic nature, mild and physical gelation process, and the resemblance of its hydrogel matrix texture and stiffness to that of the extracellular matrix. In this review, we describe
BACKGROUND Adverse cardiac remodeling and progression of heart failure after myocardial infarction are associated with excessive and continuous damage to the extracellular matrix. We hypothesized that injection of in situ-forming alginate hydrogel into recent and old infarcts would provide a
The regenerative potential of alginate-chitosan composite in bone and cartilage tissue has been well documented, but its potential utility in cardiac tissue engineering has remained unknown. This study sought to determine whether early intramyocardial injection of alginate-chitosan could prevent
Proper spatio-temporal delivery of multiple therapeutic proteins represents a major challenge in therapy strategies aimed at inducing myocardial regeneration after myocardial infarction (MI). We hypothesized that the dual delivery of insulin-like growth factor-1 (IGF-1) and hepatocyte growth factor
Congestive heart failure (CHF) is a chronic disease with a high mortality rate. Managing CHF patients has been one of the most severe health care problems for years. Scaffold materials have been predominantly investigated in acute myocardial infarction (MI) studies and have shown promising
The combination of scaffold material and cell transplantation therapy has been extensively investigated in cardiac tissue engineering. However, many polymers are difficult to administer or lack the structural integrity to restore LV function. Additionally, polymers need to be biological friendly,
Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge