Leht 1 alates 24 tulemused
S-allantoin, a major ureide compound, is produced in plant peroxisomes from oxidized purines. Sequence evidence suggested that the Transthyretin-like (TTL) protein, which interacts with brassinosteroid receptors, may act as a bifunctional enzyme in the synthesis of S-allantoin. Here, we show that
Environmental variations resulting in biotic and abiotic stresses demand adaptive changes in the photosynthetic machinery. To cope with these challenges, plant scientists are constantly striving to enhance photosynthetic activity. The photorespiration pathway, which fixes O2 and releases
A wide spectrum of soil heterocyclic nitrogen compounds are potential nutrients for plants. Here, it is shown that Arabidopsis plants are able to use allantoin as sole nitrogen source. By functional complementation of a yeast mutant defective in allantoin uptake, an Arabidopsis transporter, AtUPS1
Plants apply various molecular, physiological and morphological strategies in response to undesirable environmental conditions. One of the possible responses which may contribute to surviving stressful conditions is the accumulation of ureides. Ureides are recognized as important nitrogen-rich
Allantoin, a metabolite generated in the purine degradation pathway, was primarily considered an intermediate for recycling of the abundant nitrogen assimilated in plant purines. More specifically, tropical legumes utilize allantoin and allantoic acid as major nodule-to-shoot nitrogen transport
Ureides are nitrogen-rich compounds, derived from purine catabolism. A dual role for ureides, and for allantoin in particular, in both nitrogen recycling and the abiotic stress response has been recently identified. Previous work on the effect of allantoin on cadmium (Cd)-exposed Arabidopsis
Allantoin, an important intermediate of ureide metabolism, has been the subject of investigation recently due to its dual function in nitrogen recycling and abiotic stress response in plants. Allantoin appears to be the dominant ureide accumulating in response to different abiotic stresses, and
Allantoin is a nitrogenous compound derived from purine catabolism that contributes to nitrogen recycling in plants. Accumulation of allantoin in plant tissues and a potential role in protection of plants from abiotic stress conditions has been identified. The present work shows that application of
Allantoate amidohydrolases (AAHs) hydrolize the ureide allantoate to ureidoglycolate, CO(2), and two molecules of ammonium. Allantoate degradation is required to recycle purine-ring nitrogen in all plants. Tropical legumes additionally transport fixed nitrogen via allantoin and allantoate into the
The nitrogen (N)-rich ureides allantoin and allantoate, which are products of purine catabolism, play a role in N delivery in Leguminosae. Here, we examined their role as an N source in nonlegume plants using Arabidopsis (Arabidopsis thaliana) plants mutated in XANTHINE DEHYDROGENASE1 (AtXDH1), a
The single cell alga Chlamydomonas reinhardtii is capable of importing purines as nitrogen sources. An analysis of the annotated C. reinhardtii genome reveals at least three distinct gene families encoding for known nucleobase transporters. In this study the solute transport and binding properties
Allantoin is a purine oxidative product that serves for long distance transport of organic nitrogen in nodulating legumes and was recently related with stress tolerance in other plants. The subcellular localization of enzymes that lead to allantoin synthesis and degradation indicates that allantoin
We report the identification and cloning of an allantoate amidohydrolase (allantoate deiminase, EC 3.5.3.9) cDNA from Arabidopsis thaliana (L.) Heynh. This sequence, which we term Arabidopsis thaliana Allantoate Amidohydrolase (AtAAH), was shown to be functional by complementation of Saccharomyces
Plants can respond and adapt to changes in the internal content of carbon and nitrogen by using organic compounds that widely differ in their carbon/nitrogen ratio. Among them, the amides asparagine and glutamine are believed to be preferred by most plants, including Arabidopsis. However, increases