Leht 1 alates 22 tulemused
Previous studies have suggested that cannabinoid compounds are anticonvulsants and that these compounds depress respiratory activity. However, the anticonvulsant potential of cannabinoids and their depressive effect on respiration have not been evaluated simultaneously. In the present study, we used
Many studies suggest that the substantia nigra, pars reticulata (SNpr), a tegmental mesencephalic structure rich in γ-aminobutyric acid (GABA)- and cannabinoid receptor-containing neurons, is involved in the complex control of defensive responses through the neostriatum-nigral disinhibitory and
The cannabinoid receptor type 1 (CB1) is highly expressed in the dorsal portion of hippocampus - a brain region that has been involved in the control of conditioned emotional response (CER) in the contextual fear conditioning (CFC) model. These responses are characterized by increased freezing
Based on the previously reported co-localization and relationship between cannabinoid and dopamine receptors, the effects of cannabinoid receptor agonists against cocaine-induced toxic behavioural symptoms, including convulsive seizures, were examined in mice. The anticonvulsant effect of several
We examined the effect of cannabinoid receptor activation on basal and electrical field simulation-evoked (25 V, 2 Hz, 240 shocks) [(3)H]dopamine efflux in the isolated rat nucleus accumbens in a preparation, in which any effect on the dendrites or somata of ventral tegmental projection neurons was
Cannabinoid compounds have been reported to excite ventral tegmental neurons through activation of cannabinoid CB1 receptors. More recently, biochemical and whole-cell voltage-clamp studies carried out on CB1-transfected AtT20 cells have shown a rapid desensitization of these receptors following
The globus pallidus has been identified as a site of action for the motor effects of cannabinoids. A previous report from this laboratory demonstrated that systemic administration of the potent and selective cannabinoid receptor agonist (R)-(+)-[2,3-dihydro-5-methyl-3-[(4-morpholinyl)
Endocannabinoids released during cerebral ischemia have been implicated as neuroprotective agents. We assessed the role of cannabinoid receptors in modulating the response of neurons to oxygen/glucose deprivation (OGD), a model for in vitro ischemia, in rat hippocampal slices using extracellular
The striatum is a crucial site of action for the motor effects of cannabinoids (CBs). However, the electrophysiological consequences of activation of CB receptors on the striatal neurons have not been established. Here we report for the first time that the cannabimimetic aminoalkylindole WIN
The effect of cannabinoids on the excitatory input to the substantia nigra reticulata (SNr) from the subthalamic nucleus was explored. For this purpose a knife cut was performed rostral to the subthalamic nucleus to isolate the subthalamic nucleus and the SNr from the striatum, a major source of
Cannabinoids evoke hypothermia by stimulating central CB(1) receptors. GABA induces hypothermia via GABA(A) or GABA(B) receptor activation. CB(1) receptor activation increases GABA release in the hypothalamus, a central locus for thermoregulation, suggesting that cannabinoid and GABA systems may be
The effects of cannabinoids in brain areas expressing cannabinoid receptors, such as hypothalamic nuclei, are not yet well known. Several studies have demonstrated the role of hypothalamic nuclei in the organisation of behavioural responses induced through innate fear and panic attacks. Panic-prone
This study tested the hypothesis that cannabinoid agonists, applied locally into the pars reticulata of substantia nigra (SNpr), could modulate striatonigral transmission, without affecting the response of SNpr neurons to iontophoretically-applied GABA. Multibarreled glass capillary electrode
The substantia nigra pars reticulata belongs to the brain regions with the highest density of CB(1) cannabinoid receptors. Since the level of CB(1) receptor messenger RNA is very low in the pars reticulata, most of the receptors are probably localized on terminals of afferent axons. The hypothesis
Intracellular assessments of the physiological actions of cannabinoid receptor agonists and antagonists on adult hippocampal CA1 pyramidal cells in the in vitro slice preparation were performed using current clamp and conventional sharp-electrode intracellular recording procedures. Several