6 tulemused
Gordonia alkanivorans S7 is an efficient degrader of fuel oil hydrocarbons that can simultaneously utilize oxygen and nitrate as electron acceptors. The respiratory nitrate reductase (Nar) from this organism has been isolated using ion exchange chromatography and gel filtration, and then
Enzymes involved in oxidation of long-chain n-alkanes are still not well known, especially those in gram-positive bacteria. This work describes the alkane degradation system of the n-alkane degrader actinobacterium Gordonia sp. strain SoCg, which is able to grow on n-alkanes from dodecane (C(12)) to
Gordonia sp. strain NB4-1Y was isolated from vermicompost using bis-(3-pentafluorophenylpropyl)-sulfide as the sole added sulfur source and was found to have a broad capacity for metabolizing organosulfur compounds. NB4-1Y is closely related to G. desulfuricans and was found to metabolize 6 : 2
The mcr gene of Gordonia polyisoprenivorans VH2 is not clustered with genes required for rubber degradation. Its disruption by insertion of a kanamycin resistance cassette impaired growth on methyl-branched isoprenoids but not on linear hydrocarbons. Intact mcr from this bacterium or from Nocardia
Biotransformation using alkane-oxidizing bacteria or their alkane hydroxylase (AH) systems have been little studied at the molecular level. We have cloned and sequenced genes from Gordonia sp. TF6 encoding an AH system, alkB2 (alkane 1-monooxygenase), rubA3 (rubredoxin), rubA4 (rubredoxin), and rubB
We show that bacteria with methylotrophic potential are ubiquitous in the human mouth microbiota. Numerous strains of Actinobacteria (Brevibacterium, Gordonia, Leifsonia, Microbacterium, Micrococcus, Rhodococcus) and Proteobacteria (Achromobacter, Klebsiella, Methylobacterium, Pseudomonas,