Leht 1 alates 25 tulemused
The procedure of Malhotra and Kayastha ([1990] Plant Physiology 93: 194-200) for the purification to homogeneity of a phosphoenolpyruvate-specific alkaline phosphatase (PEP phosphatase) from germinating mung beans (Vigna radiata) was followed. Although a higher specific activity of 1.4 micromoles
The effect of temperature on the activity and structural stability of an acid phosphatase (EC 3.1.3.2.) purified from castor bean (Ricinus communis L.) seeds have been examined. The enzyme showed high activity at 45 degrees C using p-nitrophenylphosphate (p-NPP) as substrate. The activation energy
Phosphoenolpyruvate phosphatase from Brassica nigra leaf petiole suspension cells has been purified 1700-fold to apparent homogeneity and a final specific activity of 380 micromole pyruvate produced per minute per milligram protein. Purification steps included: ammonium sulfate fractionation,
Purple acid phosphatase (PAP) family genes play a crucial role in the phosphorus (P) foraging and recycling. There are 25 putative Jatropha curcas PAP genes (JcrPAP) were identified and classified into three groups based on their molecular weights. Subcellular localization prediction indicated that
Trehalose-6-phosphate (T6P) phosphatase (TPP), a dephosphorylating enzyme, catalyzes the dephosphorylation of T6P, generating trehalose. In Jatropha, we found six members of the TPP family. Five of them JcTPPA, JcTPPC, JcTPPD, JcTPPG, and JcTPPJ are
Jatropha curcas (Euphorbiaceae) is a multipurpose shrub with varied medicinal uses and is of significant economic importance. In addition to being the source of biodiesel, its seeds are also considered highly nutritious and could be exploited as a rich and economical protein supplement in animal
The complex role of phylloplane microorganisms is less understood than that of rhizospheric microorganisms in lieu of their pivotal role in plant's sustainability. This experiment aims to study the diversity of the culturable phylloplane bacteria of Jatropha curcas and evaluate their
A bioassay study was conducted to investigate the effects of substituting casein with graded levels of detoxified Jatropha curcas seed cake protein isolates (JPI) as a protein source on the growth performance, feed efficiency ratio (FER) and its protein values using rats as an animal model.
BACKGROUND
Economical cultivation of the oilseed crop Jatropha curcas is currently hampered in part due to the non-availability of purpose-bred cultivars. Although genetic maps and genome sequence data exist for this crop, marker-assisted breeding has not yet been implemented due to a lack of
Jatropha curcas seeds are rich in oil and protein. The oil is used for biodiesel production. The defatted Jatropha kernel meal obtained after oil extraction is rich in protein (58-66%) and phytate (9-11%). The phytate rich fraction was isolated from defatted kernel meal using organic solvents
Jatropha seed cake (JSC) is an excellent source of protein but does contain some antinutritional factors (ANF) that can act as toxins and thus negatively affect the growth and health status of fish. While this can limit the use of JSC, detoxified Jatropha protein isolate (DJPI) may be a better
The intracellular location of several enzymes concerned with phospholipid metabolism was investigated by examining their distribution in organelles separated on sucrose gradients from total homogenates of castor bean (Ricinus communis var. Hale) endosperm. The enzymes phosphatidic acid phosphatase,
FARNESYL TRANSFERASE (FARNESYL PYROPHOSPHATE: isopentenyl pyrophosphate farnesyl transferase; geranylgeranyl pyrophosphate synthetase) was purified at least 400-fold from extracts of castor bean (Ricinus communis L.) seedlings that were elicited by exposure for 10 h to Rhizopus stolonifer spores.
This study aims to expand the set of internal control genes used for RT-qPCR experiments with Castor bean (Ricinus communis) seeds by evaluating candidate genes across several seed tissues and developmental stages. Nine reference genes were selected, including actin-11 (ACT11), tubulin alpha-2
Chelating agents have been considered as an important phytoremediation strategy to enhance heavy metal extraction from contaminated soil. A pot experiment was conducted to explore the effects of low molecular weight organic acids (LMWOAs) on the phytoremediation efficiency of copper (Cu) by castor