Leht 1 alates 29 tulemused
Acid phosphatases (APases) play a key role in phosphorus (P) acquisition and recycling in plants. White lupin (Lupinus albus L.) forms cluster roots (CRs) and produces large amounts of APases under P deficiency. However, the relationships between the activity of intracellular and extracellular
Acid phosphatase (EC 3.1.3.2) from yellow lupin (Lupinus luteus) seeds was purified to homogeneity by ammonium sulphate fractionation, affinity chromatography, cation-exchange chromatography, gel filtration or reverse-phase HPLC. The enzyme is a dimer with the 50 kD and 44 kD subunits and contains
Peptide mapping of lupin acid phosphatase clearly demonstrated the homology between its two subunits. Sequenced tryptic peptides also showed 78% identity (92% similarity) to the red bean acid phosphatase. Peptides exclusive for the 50-kDa subunit are homologous to N-terminally located sequences in
N-linked oligosaccharide chains released by hydrazinolysis from yellow lupin seed diphosphonucleotide phosphatase/phosphodiesterase were fluorescence labeled and separated by high performance liquid chromatography (GlycoSep N and GlycoSep H columns). Exoglycosidase sequencing elucidated the
Acid phosphatases of abaxial and adaxial regions in the cotyledons of the Lupinus luteus which possess structurally distinct protein bodies were examined. Acid phosphatase activity was investigated by enzyme assays and by gel electrophoresis and was localized by cytochemical methods in the
Rhizosphere processes play a critical role in phosphorus (P) acquisition by plants and microbes, especially under P-limited conditions. Here, we investigated the impacts of nutrient addition and plant species on plant growth, rhizosphere processes, and soil P dynamics. In a glasshouse experiment,
A phosphatase cleaving the pyrophosphate bond in diphosphonucleotides and phosphodiester bond in various phosphodiesters (pH optimum at 6.25) was purified from yellow lupin (Lupinus luteus L.) seeds. The enzyme is 75 kDa monomeric glycoprotein (pI=6.4) with 4.4% of carbohydrate (mannose,
A cDNA encoding previously purified and characterized diphosphonucleotide phosphatase/phosphodiesterase (PPD1) from yellow lupin (Lupinus luteus L.) was identified. The ppd1 gene encodes a protein containing a cleavable signal sequence. A functional expression of PPD1 in Saccharomyces cerevisiae
Yellow lupin diphosphonucleotide phosphatase/phosphodiesterase (PPD1) represents a novel group of enzymes. Here we report that it possesses one iron atom and one manganese atom (1:1 molar ratio) per subunit. The enzyme exhibits visible absorption maximum at approximately 530 nm. Prolonged oxidation
Analysis of plant purple acid phosphatases (PAPs) showed high conservation and different distribution of N-glycosylation sites. Oligosaccharide structures of Lupinus luteus acid phosphatase (Lu_AP) produced in insect cells were determined. Mutant Lu_AP and Phaseolus vulgaris (Ph_AP) phosphatases
White lupin (Lupinus albus) grown under P deficiency displays a suite of highly coordinated adaptive responses. Included among these is secretion of copious amounts of acid phosphatase (APase). Although numerous reports document that plants secrete APases in response to P deficiency, little is known
The acid phosphatase gene from lupin was expressed in transgenic rice plants under the control of the maize ubiquitin promoter or rice chlorophyll a/b binding protein (Cab) promoter. Transgenic rice leaves exhibited up to an 18-fold increase in phytate-hydrolyzing activity. Based on the
Lupinus albus cell cultures secrete a large set of hydrolases into their medium with a small number of highly abundant proteins. We have investigated the protein composition of the medium with two different methods, two-dimensional gel electrophoresis-electrospray ionisation tandem mass spectrometry
White lupin (Lupinus albus) exhibits strong root morphological and physiological responses to phosphorus (P) deficiency and auxin treatments, but the interactive effects of P and auxin in regulating root morphological and physiological traits are not fully understood. This study aimed to assess