Leht 1 alates 58 tulemused
Electroencephalographic (EEG) seizures were measured in rats after intrahippocampal injection of 120 nmol quinolinic acid into the stratum radiatum CA1 or 0.19 nmol kainic acid in the dentate gyrus or in the stratum radiatum. Injection of 5 micrograms SMS 201-995, a peptidase-resistant cyclic
Narcotic withdrawal was precipitated by administration of naloxone in a low dose at 2 h after the final dose of morphine in a 9-day dependency-inducing schedule. Withdrawal was characterized by leaps, increased nocifensor activity and by cerebral cortical epileptiform activity, the latter not
Epilepsy is a common disabling disease with complex, multifactorial genetic and environmental etiology. The small fraction of epilepsies subject to Mendelian inheritance offers key insight into epilepsy disease mechanisms; and pathologies brought on by mutations in a single gene can point the way to
BACKGROUND
Neuronal ceroid lipofuscinoses are a group of inherited autosomal recessive lysosomal diseases, most commonly found in infancy. These are neuropathologically characterised by accumulation of an autofluorescent lipopigment in neurons and other cells. This condition is clinically
Febrile seizures (FS) are the most common type of convulsive events in infants and young children, but the precise underlying genetic mechanism remains to be explored. To investigate the underlying pathogenic factors in FS and subsequent epilepsy, alterations in gene expression between the two new
Previous results have shown that kindled seizures increase N-acetyl-aspartylglutamate (NAAG) levels in the entorhinal cortex, while non-kindled convulsions have no effect. To further explore possible relationships between epilepsy and the physiology of NAAG, the effect of amygdaloid kindling on the
Febrile seizures (FS) are the most common seizure disorders in children aged 6 months to 5 years. Children suffering from complex FS have a high risk of developing subsequent temporal lobe epilepsy (TLE). Neuroinflammation is involved in the pathogenesis of FS although the mechanism remains unknown.
Tripeptidyl peptidase 1 (TPP1) deficiency causes CLN2 disease, late infantile (or classic late infantile neuronal ceroid lipofuscinosis), a paediatric neurodegenerative disease of autosomal recessive inheritance. Patients suffer from blindness, ataxia, epilepsy and cognitive defects, with MRI
Urokinase-type plasminogen activator (uPA) and kallikrein-related peptidase 8 (KLK8) are serine proteases that contribute to extracellular matrix (ECM) remodeling after brain injury. They can be labelled with the novel radiotracer [111 In]MICA-401. As the first step in exploring the applicability of
Cerebrospinal fluid taken from rats subjected to electroshock-induced seizures and injected into the cerebral ventricles of rats that had not been shocked increased the seizure threshold of the recipients. The anticonvulsant activity of the donor cerebrospinal fluid was antagonized by opioid
Epilepsy is a common neurological disorder with a complex etiology. Our previous study demonstrated that dipeptidyl peptidase IV (DPP4) may be associated with the pathogenesis of epilepsy. However, whether the DPP4 inhibitor sitagliptin has an anticonvulsant effect and the underlying mechanism
Kallikrein-related peptidases (KLKs) are a family of serine proteases that when dysregulated may contribute to neuroinflammation and neurodegeneration. In the present review article, we describe what is known about their physiological and pathological roles with an emphasis on KLK6 and KLK8, two
Objective(s): Although the available therapeutic agents alleviate the symptoms in patients with temporal lobe epilepsy (TLE), these antiepileptic drugs do not provide adequate control of seizures in 30-40% of patients. This study was
The regulatory mechanisms of neuropeptide-metabolizing enzymes often play a critical role in the pathogenesis of neuronal damage. A systemic administration of pentylenetetrazol (PTZ), an antagonist of GABA(A) receptor ion channel binding site, causes generalized epilepsy in an animal model. In the
Episodes of prolonged seizures or head trauma produce chronic hippocampal network hyperexcitability hypothesized to result primarily from inhibitory interneuron loss or dysfunction. The possibly causal role of inhibitory neuron failure in the development of epileptiform pathophysiology remains