Leht 1 alates 116 tulemused
The activity of phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) after heat shock (HS) in leaves and buds of transgenic Nicotiana plumbaginifolia containing an Arabidopsis HSP18.2 promoter-parsley phenylalanine ammonia-lyase 2 (HSP18.2-PAL2) chimera gene was examined. Immediately after HS treatment at
Transgenic tobacco (Nicotiana tabacum L.) plants overexpressing the enzyme L-phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) were grown from seeds of a primary transformant containing the bean PAL2 gene, which had shown homology-dependent silencing of the endogenous tobacco PAL genes. Analysis of
The transport of l-arginine (l-Arg), l-aspartic acid (l-Asp), l-histidine (l-His), and l-phenylalanine (l-Phe) has been investigated in suspension cultures of Nicotiana tabacum cv. Wisconsin 38 cells. Uptake of these amino acids is pH- and energy-dependent, concentrative (except for l-Asp),
Phenylalanine ammonia lyase (PAL) activity was measured in p-fluorophenylalanine (PFP)-sensitive and -resistant tobacco (Nicotiana tabacum L.) and carrot (Daucus carota L.) cell lines which are known to oversynthesize phenylalanine. A correlation between phenolic levels and PAL activities was
In tobacco cell culture (Nicotiana tabacum L. "Bright Yellow" T-13), phenylalanine ammonia-lyase (PAL) activity was induced in response to an exogenously added kinetin. RNA blot hybridization analysis showed that a single species of PAL transcript 2.9-kb in size was detected using the PAL cDNA
The influence of phosphate on the medium-induced formation of cinnamoyl putrescines in cell cultures of Nicotiana tabcum was investigated. Phosphate added to a phosphate-free production medium was completely accumulated in the cells within 24h after inoculation at initial concentrations up to 2 mM.
H(2)O(2) from the oxidative burst, cell death, and defense responses such as the production of phenylalanine ammonia lyase (PAL), salicylic acid (SA), and scopoletin were analyzed in cultured tobacco (Nicotiana tabacum) cells treated with three proteinaceous elicitors: two elicitins
In this study, a phenylalanine ammonia-lyase (PAL) gene was cloned from Dendrobium candidum using homology cloning and RACE. The full-length sequence and catalytic active sites that appear in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum are also found: PAL cDNA of D. candidum
Two cDNA clones (NtmybAS1 and NtmybAS2) encoding MYB-related proteins with strong sequence similarity to petunia (Petunia hybrida) PhMYB3 were isolated from a tobacco (Nicotiana tabacum cv Samsun) pollen cDNA library. Northern blot and in situ hybridization revealed that NtmybAS transcripts are
Phylogenetic analysis based on the deduced amino acid sequence of phenylalanine ammonia-lyase gene (SlPAL5) cDNA from tomato (Solanum lycopersicum L.) revealed high sequence similarity to PAL genes in Nicotiana tabacum (92%), Ipomoea nil (87%), Manihot esculenta (84%), and Catharanthus roseus (84%).
A tobacco (Nicotiana tabacum L. cv Samsun NN) cDNA clone coding the enzyme phenylalanine ammonia-lyase (PAL) was isolated from a cDNA library made from polyadenylated RNA purified from tobacco mosaic virus (TMV)-infected leaves. Southern analysis indicated that, in tobacco, PAL is encoded by a small
We isolated the 5' flanking region of a gene for phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) from Pinus taeda, PtaPAL. To investigate the tissue-specific expression of the PtaPAL promoter, histochemical assay of GUS activity was performed using the transgenic tobacco expressing the PtaPAL
We analyzed lignin content and composition in transgenic tobacco (Nicotiana tabacum) lines altered in the expression of the early phenylpropanoid biosynthetic enzymes L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase (C4H). The reduction of C4H activity by antisense expression or sense
Phenylalanine ammonia-lyase (PAL) catalyzes the first reaction in the general phenylpropanoid pathway leading to the production of phenolic compounds with a significant range of biological function. A PAL gene we designated gPAL1, cloned from tobacco, consists of two exons separated by an intron of
PAL (L-phenylalanine ammonia-lyase), the first enzyme of phenylpropanoid biosynthesis, is often encoded by multigene families in plants. A PCR-based approach was used to isolate cDNA clones corresponding to the four PAL genes of tobacco (Nicotiana tabacum). By careful comparison of cDNA and genomic