Leht 1 alates 21 tulemused
Active polyamine biosynthesis occurs in the embryonic axis, but not in the cotyledons, during germination of Glycine max (L.) cv Williams seeds and subsequent growth of the young seedlings. The hypocotyl and radicle synthesize and accumulate considerable amounts of cadaverine (Cad) and putrescine
Active polyamine metabolism occurs in Glycine max (L.) seeds during development. Most (>/=97%) of putrescine (Put), spermidine (Spd), spermine (Spm), and cadaverine (Cad) are present as free forms in the growing embryo. In the cotyledon or embryonic axis, Put decreases to a nearly undetectable
Unlike other eukaryotes, which synthesize polyamines (PA) only from ornithine, plants possess an additional pathway utilizing arginine as a precursor. In this study, we have identified cDNA clones coding for a Glycine max ornithine decarboxylase (ODC, EC 4.1.1.7) and an arginine decarboxylase (ADC,
Three-day-old soybean (Glycine max) seedlings were exposed to 0.4 M sorbitol solution for 4 h to induce amidinotransferase activity, with the corresponding enzyme being purified to homogeneity by chromatographic separation on DEAE-Sephacel, Sephacryl S-300 and L-arginine Sepharose 4B. The purified
Transglutaminase was purified to homogeneity from leaves of soybean (Glycine max). The molecular weight of the enzyme estimated by gel filtration and sodium dodecyl sulfate polyacrylamide gel electrophoresis was 80,000 daltons. This purified enzyme catalyzed the incorporation of [14C]-putrescine
Arginine decarboxylase (EC 4.1.1.19) was purified from soybean, Glycine max, hypocotyls by a procedure which includes ammonium sulfate fractionation, acetone precipitation, gel filtration chromatography, and affinity chromatography. Using this procedure, ADC was purified to one band in
Spermidine synthase (EC 2.5.1.16) was purified to homogeneity for the cytosol of soybean (Glycine max) axes using ammonium sulfate fractionation and chromatography on DEAE-Sephacel, Sephacryl S-300, omega-aminooctyl-Sepharose and ATPA-Sepharose. The molecular mass of the enzyme estimated by gel
Treatment with chitosan of suspension-cultured Glycine max cells labeled with (45)Ca(2+) caused a rapid release of calcium, which was complete much earlier than the chitosan-induced leakage of intracellular electrolytes and probably reflects calcium loss primarily from the cell wall and/or plasma
Arginine decarboxylase (ADC) is one of the key enzymes in the biosynthesis of putrescine in plants. The regulation of its activity depends on the physiological condition, developmental stage, and type of tissue. We have cloned ADC cDNA from soybean (Glycine max) hypocotyls to understand the
When the polyamine content of soybean (Glycine max) seeds was examined during the early stages of germination, the major polyamine in the cotyledons was found to be spermidine, followed by spermine; while very low concentrations of cadaverine were found. In the embryonic axes, however, cadaverine
Polyamines (PAs) are assumed to perform their functions through their oxidative product such as gamma-aminobutyric acid (GABA) formation. However, there is only limited information on the interrelation between PA degradation and GABA accumulation under salt stress. In order to reveal a quantitative
Arginase (EC 3.5.3.1) was purified to homogeneity from cytosol of soybean, Glycine max, axes by chromatographic separations on Sephadex G-200, DEAE-sephacel, hydroxyapatite, and arginine-affinity columns. The molecular weight of the enzyme estimated by pore gradient gel electrophoresis was 240,000,
The levels of amines in soybeans as affected by cultivar in two consecutive years and by germination were investigated. Spermidine, spermine, putrescine, agmatine, and cadaverine were detected, whereas tyramine, histamine, tryptamine, serotonine, and phenylethylamine were not. Spermidine was the
Natural polyamines are shown to inhibit dioxygenase activity of soybean lipoxygenase-1, but they were ineffective toward the lipoxygenase-2 isozyme. The inhibitory power was dependent on the number of basic groups in the molecule, in the order spermine > spermidine > cadaverine >/= putrescine. Both
In legumes, the number of root nodules is controlled by a mechanism called autoregulation. Recently, we found that the foliar brassinosteroid (BR), a plant growth-regulating hormone, systemically regulates the nodule number in soybean plants. In the present study we report that such down-regulation