12 tulemused
A simple and reproducible method for the treatment of Arabidopsis thaliana leaves with rotenone is presented. Rosette leaves were incubated with rotenone and Triton X-100 for at least 15 h. Treated leaves showed increased expression of COX19 and BCS1a, 2 genes known to be induced in Arabidopsis cell
In this study we analyzed transcript abundance and promoters of genes encoding mitochondrial proteins to identify signaling pathways that regulate stress-induced gene expression. We used Arabidopsis (Arabidopsis thaliana) alternative oxidase AOX1a, external NADP H-dehydrogenase NDB2, and two
Expression of the gdh2 gene encoding the alpha-subunit of mitochondrial glutamate dehydrogenase depends on redox state of the mitochondrial electron transport chain. Treatment of Arabidopsis thaliana cell suspension with antimycin A, a respiratory chain complex III inhibitor, resulted in an increase
Plastids assume various morphologies depending on their developmental status, but the basis for developmentally regulated plastid morphogenesis is poorly understood. Chemical induction of alterations in plastid morphology would be a useful tool for studying this; however, no such chemicals have been
Chemical priming is an attractive and promising approach to improve abiotic stress tolerance in a broad variety of plant species. We screened the RIKEN Natural Products Depository (NPDepo) chemical library and identified a novel compound, FSL0260, enhancing salinity-stress tolerance in Arabidopsis
Mitochondrial complex I is a major avenue for reduced NAD oxidation linked to oxidative phosphorylation in plants. However, the plant enzyme has structural and functional features that set it apart from its counterparts in other organisms, raising questions about the physiological significance of
The plant respiratory chain contains several pathways which bypass the energy-conserving electron transport complexes I, III and IV. These energy bypasses, including type II NAD(P)H dehydrogenases and the alternative oxidase (AOX), may have a role in redox stabilization and regulation, but current
Mitochondria import hundreds of cytosolically synthesized proteins via the mitochondrial protein import apparatus. Expression analysis in various organs of 19 components of the Arabidopsis mitochondrial protein import apparatus encoded by 31 genes showed that although many were present in small
Plant mitochondria contain non-phosphorylating NAD(P)H dehydrogenases (DHs) that are not found in animal mitochondria. The physiological function, substrate specificity, and location of enzymes within this family have yet to be conclusively determined. We have linked genome sequence information to
Plants activate different defense systems to counteract the attack of microbial pathogens. Among them, the recognition of conserved microbial- or pathogen-associated molecular patterns (MAMPs or PAMPs) by pattern-recognition receptors stimulates MAMP- or PAMP-triggered immunity (PTI). In recent
All plants contain an alternative electron transport pathway (AP) in their mitochondria, consisting of the alternative oxidase (AOX) and type 2 NAD(P)H dehydrogenase (ND) families, that are thought to play a role in controlling oxidative stress responses at the cellular level. These alternative
Plant cells integrate signals from external sources and from organelles to regulate gene expression, referred to as anterograde and retrograde signaling, respectively. Functional characterization of the promoter of ALTERNATIVE OXIDASE1a (AOX1a) from Arabidopsis (Arabidopsis thaliana), a marker for