13 tulemused
'Coat-imposed' seed dormancy of many non-endospermic and endospermic species is released during after-ripening. After-ripening-mediated promotion of tobacco ( Nicotiana tabacum L.) seed germination is mainly due to a promotion of testa rupture and a similar promotion of subsequent endosperm rupture.
An air-dry developmental state with low-hydrated tissues is a characteristic of most plant seeds. Seed dormancy is an intrinsic block of germination and can be released during after-ripening, that is air-dry storage of mature seeds. Both seed-covering layers, testa and endosperm, cause the
A method to remove the exine from mature tobacco pollen and to release numerous intact pollen protoplasts has been developed. Post-anthesis binucleate pollen was treated with water, buffered with MES at pH 5.5, for two hours. Rupture of the exine was caused by the force of pollen hydration exposing
Rupture of the seed coat and rupture of the endosperm are separate events in the germination of Nicotiana tabacum L. cv Havana 425 seeds. Treatment with 10-5 M abscisic acid (ABA) did not appreciably affect seed-coat rupture but greatly delayed subsequent endosperm rupture by more than 100 h and
Low-temperature plasma (LTP) is capable of ionizing a broad range of organic molecules at ambient conditions. The coupling of LTP to a mass analyzer delivers chemical profiles from delicate objects. To investigate the suitability of LTP ionization for mass spectrometry (MS) based in vivo studies, we
Seed germination of Nicotiana tabacum L. cv. Havana 425 is determined by the balance of forces between the growth potential of the embryo and the mechanical restraint of the micropylar endosperm. In contrast to the gibberellin GA4, the brassinosteroid (BR) brassinolide (BL) did not release
Tobacco seeds show a coat-imposed dormancy in which the seed envelope tissues (testa and endosperm) impose a physical constraint on the radicle protrusion. The germination-limiting process is represented by the endosperm rupture which is induced by cell-wall weakening. Transgenic tobacco seeds,
Ultra-thin sections of Nicotiana glutinosa L. leaves inoculated with a concentrated solution of tobacco mosaic virus were made at short intervals from 0 to 78 hours after inoculation. Eight hours after inoculation, the size of starch grains increased. This was followed by rupture of cytoplasmic and
Tobacco varieties carrying the N gene from Nicotiana glutinosa respond to infection by Tobacco Mosaic Virus (TMV) by forming necrotic local lesions (hypersensitive reaction), thereby localizing the infection. In this study, infected mesophyll leaf tissue of N. tabacum Samsun NN was treated with the
Class I beta-1,3-glucanase (betaGLU I) is transcriptionally induced in the micropylar endosperm just before its rupture prior to the germination (i.e. radicle emergence) of Nicotiana tabacum L. cv. 'Havana 425' seeds. Ethylene is involved in endosperm rupture and high-level betaGLU I expression;
The regulation of water uptake of germinating tobacco (Nicotiana tabacum) seeds was studied spatially and temporally by in vivo (1)H-nuclear magnetic resonance (NMR) microimaging and (1)H-magic angle spinning NMR spectroscopy. These nondestructive state-of-the-art methods showed that water
We have used isolated spinach (Spinacea oleracea L.) thylakoid membranes to investigate the possible cryoprotective properties of class I [beta]-1,3-glucanase (1,3-[beta]-D-glucan 3-glucanohydrolase; EC 3.2.1.39) and chitinase. Class I [beta]-1,3-glucanase that was purified from tobacco (Nicotiana
Vacuoles are suggested to play crucial roles in plant defense-related cell death. During programmed cell death, previous live cell imaging studies have observed vacuoles to become simpler in structure and have implicated this simplification as a prelude to the vacuole's rupture and consequent lysis