6 tulemused
Scutellarein, the main metabolite of scutellarin in vivo, has relatively better solubility, bioavailability and bio-activity than scutellarin. However, compared with scutellarin, it is very difficult to obtain scutellarein from Nature. Therefore, the present study focused on establishing an
Scutellarin (1) has been used for the treatment of angina pectoris, cerebral infarction and coronary heart disease with a large market share in China. Pharmacokinetic studies on scutellarin showed that scutellarin (1) is readily converted into its metabolites in vivo. In this paper, a new and
Context Scutellarin (1) has been widely used in China to treat acute cerebral infarction and paralysis induced by cerebrovascular diseases. However, scutellarin (1) has unstable metabolic characteristics. Objective The metabolic profile of 6-O-scutellarein was studied to determine its metabolic
Scutellarin (1) has been widely used to treat acute cerebral infarction in clinic, but poor aqueous solubility decreases its bioavailability. Interestingly, scutellarin (1) could be metabolized into scutellarein (2) in vivo. In this study, a sulfonic group was introduced at position C-8 of
For more than thirty years, scutellarin (Scu) has been used in China to clinically treat acute cerebral infarction and paralysis. Scutellarein (Scue), the major Scu metabolite in vivo, exhibits heightened neuroprotective effects when compared to Scu. To explore the neuroprotective role of these
A series of hybrid molecules of scutellarein and tertramethylpyrazine's active metabolites have been synthesized. Compared to the original compound, these prepared compounds exhibited higher water solubility, more appropriate logP and better stability. Importantly, compounds 11b, 11d and 11e showed