15 tulemused
Implants of carbon fiber composite have been widely used in orthopedic and spinal surgeries. However, studies using carbon fiber-reinforced cages demonstrate frequent appearance of fibrous layer interposed between the implant and the surrounding bone. The aim of the present study was to test the
Objective of this study was to examine functional condition of cardiovascular system among workers at "Ulba Metallurgical Plant" JSC (located in Ust-Kamenogorsk, Eastern Kazakhstan)--one of the world largest enterprises with the full production cycle from processing of tantalum containing raw
Dense (>98 th%) and homogeneous ceramic/metal composites were obtained by spark plasma sintering (SPS) using ZrO2 and lamellar metallic powders of tantalum or niobium (20 vol.%) as starting materials. The present study has demonstrated the unique and unpredicted simultaneous enhancement in toughness
Ferroelectric hafnium zirconium oxide holds great promise for a broad spectrum of CMOS compatible and scaled microelectronic applications, including memory, low voltage transistors, and infrared sensors, among others. An outstanding challenge hindering implementation of this material is polarization
Background and purpose - Long-term fixation of cemented femoral stems relies on several factors including cement adhesion and fatigue. Hi-Fatigue is a newer third-generation bone cement with low-viscosity properties at room temperature, good mechanical strength, and stable bone-cement interface in a
Recently tantalum is gaining more attention as a new metallic biomaterial as it has been shown to be bioactive and biologically bonds to bone. However, the relatively high cost of manufacture and an inability to produce a modular all Ta implant has limited its widespread acceptance. In this study we
This study evaluated a porous tantalum biomaterial (Hedrocel) designed to function as a scaffold for osseous ingrowth. Samples were characterized for structure, Vickers microhardness, compressive cantilever bending, and tensile properties, as well as compressive and cantilever bending fatigue. The
Additive manufacturing (AM) techniques enable fabrication of bone-mimicking meta-biomaterials with unprecedented combinations of topological, mechanical, and mass transport properties. The mechanical performance of AM meta-biomaterials is a direct function of their topological design. It is,
The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of
OBJECTIVE
To evaluate the long-term mechanical behavior in vivo of expandable endobronchial wire stents, we imaged three different prostheses in the treatment of tracheobronchial disease.
METHODS
Six patients with bronchial stenoses (three benign, three malignant) underwent insertion of metallic
Coronary heart disease has become the most common source for death in western industrial countries. Since 1986, a metal vessel scaffold (stent) is inserted to prevent the vessel wall from collapsing [Puel, J., Joffre, F., Rousseau, H., Guermonprez, B., Lancelin, B., Valeix, B., Imbert, G.,
The use of surgical implants and prosthetic devices to replace the original function of different components of the human biological system is a well established tradition in the history of medicine. Currently, one of the most prevalent points of view in dealing with this subject, is that of
Limited information exists regarding the in vivo stability of endovascular stents. Nine excised human vascular segments with implanted stents (n = 16) manufactured from stainless steel, nickel-titanium, tantalum, and cobalt-based alloys were analyzed. The stent/tissue components were separated using
BACKGROUND
Stabilization of a pelvic discontinuity with a posterior column plate with or without an associated acetabular cage sometimes results in persistent micromotion across the discontinuity with late fatigue failure and component loosening. Acetabular distraction offers an alternative
The aim to find the perfect biomaterial for spinal implant has been the focus of spinal research since the 1800s. Spinal surgery and the devices used therein have undergone a constant evolution in order to meet the needs of surgeons who have continued to further understand the biomechanical