Leht 1 alates 29 tulemused
Minor prenylated hop compounds have been attracting increasing attention due to their promising anticarcinogenic properties. Even after intensive purification from natural raw extracts, allocating certain activities to single compounds or complex interactions of the main compound with remaining
BACKGROUND
Chemotherapeutic drug resistance remains a clinical obstacle in cancer management. Drug-resistant cancer cells usually exhibit cross-resistance to ionizing radiation, which has devastating consequences for patients. With a better understanding of the molecular mechanisms, it will be
OBJECTIVE
To examine the effect of 17beta-estradiol and xanthohumol in alkaline phosphatase (ALP) expression and activity in breast cancer MCF-7 cells.
METHODS
ALP isoenzymes expression was evaluated by RT-PCR and Western blotting. ALP activity was measured by spectrophotometry. Cell proliferation
Xanthohumol (XN) and 8-prenylnaringenin (8PN) are hop (Humulus lupulus L.) polyphenols studied for their chemopreventive effects on certain cancer types. The breast cancer line MCF-7 was treated with doses ranging from 0.001 to 20 µM of XN or 8PN in order to assess the effects on cell viability and
OBJECTIVE
Xanthohumol isolated from hops has been reported to exhibit anticancer effects in diverse human cancers. However, its effect on breast cancer has not yet been clearly defined. The purpose of this study was to investigate the effects of xanthohumol on breast cancer cell
Xanthohumol (XN) is a natural anticancer compound that inhibits the proliferation of oestrogen receptor-α (ERα)-positive breast cancer cells. However, the precise mechanism of the antitumour effects of XN on oestrogen (E2)-dependent cell growth, and especially its direct target molecule(s),
Breast cancer is estimated as one of the most common causes of cancer death among women. In particular, triple negative breast cancers (TNBCs), which do not express the genes for estrogen/progesterone receptors (ER/PR) and human epidermal growth factor receptor 2 (HER2), have been associated with
Xanthohumol (XN), a prenylflavonoid found in the hop plant, Humulus lupulus, exhibits a variety of biological activities. Numerous studies have reported that XN inhibits the growth of many types of cancer cells, but the effects of XN on tumor immunity have not yet been studied. We explored the
Xanthohumol (XN), a natural polyphenol present in beer, is known to exert anti-cancer effects. However, its precise mechanisms are not yet clearly defined. The aim of this study was to investigate the effect of oral administration of XN in breast cancer xenografts in nude mice. Proliferation and
Natural compounds derived from plants have been an important source of numerous clinically useful anticancer agents. Nevertheless, limited studies indicate that xanthohumol (XN), a major prenylated flavonoid in hop plants (Humulus lupulus), may possess anticarcinogenic properties. The purpose of the
METHODS
The intracellular fate of xanthohumol (XN) from hops is an underexplored field in the research for the molecular mechanisms causing its wide range of effects in chemoprevention and gene expression involved in hepatic metabolism.
RESULTS
We aimed to elucidate possible targets for binding of
Fourier Transform Infrared spectroscopy was applied to detect in vitro cell death induced in prostate (PC-3) and breast (T47D) cancer cell lines treated with xanthohumol (XN). After incubation of the cancer cells with XN, specific spectral shifts in the infrared spectra arising from selected
Two biotinylated derivatives of the main hop chalcone xanthohumol (1) were prepared by a one-step synthesis via esterification using biotin and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC×HCl) and 4-dimethylaminopyridine (DMAP) as coupling reagents. The products were
The female inflorescences of the hop plant (Humulus lupulus L.) are essential during brewing to add taste and flavor to beer and to stabilize beer foam. Xanthohumol, the main prenylated chalcone in hops, was investigated for its antiinvasive activity on human breast cancer cell lines (MCF-7 and
METHODS
Hops (Humulus lupulus L.) produce unique prenylflavonoids that exhibit interesting bioactivities. This study investigates the interactions between selected prenylflavonoids and breast cancer resistance protein (BCRP/ABCG2), an efflux transporter important for xenobiotic bioavailability and