14 نتایج
A potential approach for activating prodrugs in hypoxic regions of tumors is to use ionizing radiation, rather than bioreductive enzymes, to effect reduction. This study investigates radiolytic release of 8-hydroxyquinoline (8-HQ), as a model for hydroxyaza-chloromethylbenzindoline DNA minor groove
We previously found that clioquinol (CQ) increases functional hypoxia-inducible factor-1α (HIF-1α) with enhanced transcription of its target genes. Here we report that compounds derived from 8-hydroxyquinoline including CQ, broxyquinoline (BQ), iodoquinol (IQ) and chloroacetoxyquinoline (CAQ)
Metabolic reduction can be used to activate prodrugs in hypoxic regions of tumours, but reduction by ionising radiation is also theoretically attractive. Previously, we showed that a cobalt(III) complex containing 8-hydroxyquinoline (8-HQ) and cyclen ligands releases 8-HQ efficiently on irradiation
Hypoxia is a common feature of neurodegenerative diseases, including Alzheimer's disease that may be responsible for disease pathogenesis and progression. Therefore, the hypoxia-inducible factor (HIF)1 system, responsible for hypoxic adaptation, is a potential therapeutic target to combat these
Based on a multimodal drug design paradigm, we have synthesized a multifunctional non-toxic, brain permeable iron chelator, M30, possessing the neuroprotective propargylamine moiety of the anti-Parkinsonian drug, rasagiline (Azilect) and antioxidant-iron chelator moiety of an 8-hydroxyquinoline
The anti-Parkinson iron chelator brain selective monoamine oxidase (MAO) AB inhibitor M30 [5-(N-methyl-N-propargylaminomethyl)-8-hydroxyquinoline] was shown to possess neuroprotective activities in vitro and in vivo, against several insults applicable to several neurodegenerative diseases, such as
Hypoxia-Inducible Factor-1 (HIF-1) plays an important role as a transcription factor under hypoxia. It activates numerous genes including those involved in angiogenesis, glucose metabolisms, cell proliferation and cell survival. The HIF-1 alpha subunit is regulated by 2-oxoglutarate (OG)- and
Tert-butyl hydroperoxide (tBHP) injured freshly isolated proximal tubules in an Fe-dependent fashion that was ameliorated by a lipophilic antioxidant, diphenyl-p-phenylenediamine (DPPD), but was only minimally affected by glycine. Menadione-induced injury was Fe-independent and was unaffected by
The novel multifunctional brain permeable iron, chelator M30 [5-(N-methyl-N-propargyaminomethyl)-8-hydroxyquinoline] was shown to possess neuroprotective activities in vitro and in vivo, against several insults applicable to various neurodegenerative diseases, such as Alzheimer's disease,
Increasing evidence suggests that dysregulation of brain insulin/insulin receptor (InsR) and insulin signaling cascade are associated with the pathogenesis of Alzheimer's disease (AD). Our group has designed and synthesized a series of multi-target iron chelating, brain permeable compounds for AD.
Based on a multimodal drug design strategy for age-related neurodegenerative diseases, we have synthesized a multifunctional nontoxic, brain-permeable iron-chelating compound, M30, possessing the neuroprotective N-propargyl moiety of the anti-Parkinsonian drug, monoamine oxidase-B inhibitor,
The airways of cystic fibrosis (CF) patients have thick mucus, which fosters chronic, polymicrobial infections. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most prevalent respiratory pathogens in CF patients. In this study, we tested whether P. aeruginosa influences the
Hypoxic pulmonary vasoconstriction (HPV) matches lung perfusion to ventilation for optimizing pulmonary gas exchange; however, the underlying mechanism has not yet been fully elucidated. Lung nitric oxide (NO) generation appears to be involved in this process. Recently, mitochondria have been
Disability or death due to intracerebral hemorrhage (ICH) is attributed to blood lysis, liberation of iron, and consequent oxidative stress. Iron chelators bind to free iron and prevent neuronal death induced by oxidative stress and disability due to ICH, but the mechanisms for this effect remain