صفحه 1 از جانب 17 نتایج
Stable isotope ratios (δ13C and δ18O) of tree-ring α-cellulose are important tools in paleoclimatology, ecology, plant physiology and genetics. The Multiple Sample Isolation System for Solids (MSISS) was a major advance in the tree-ring α-cellulose extraction methods, offering greater throughput and
Tree-ring carbon and oxygen isotope ratios from live and recently dead trees may reveal important mechanisms of tree mortality. However, wood decay in dead trees may alter the δ(13)C and δ(18)O values of whole wood obscuring the isotopic signal associated with factors leading up to and including
Novel tree ring parameters - δ(13)C and δ(2)H from methoxyl groups - have been developed to reconstruct palaeoclimate. Tests with δ(13)C and δ(18)O derived from whole wood and cellulose samples, however, indicated differences in the isotopic composition and climate signal, depending on the extracted
Loblolly pine residues have enormous potential to be the raw material for advanced biofuel production due to extensive sources and high cellulose content. Hot water (HW) pretreatment, while being a relatively economical and clean technology for the deconstruction of lignocellulosic biomass, could
Chemical wood property traits were analyzed for the presence of quantitative trait loci (QTLs) in a three-generation outbred pedigree of loblolly pine ( Pinus taeda L.). These traits were assayed using pyrolysis molecular beam mass spectrometry and include mass spectrum peak intensities associated
The Jayme-Wise and diglyme-HCl methods for extracting cellulose from plant material for stable-isotope analysis differ considerably in ease of use, with the latter requiring significantly less time and specialized equipment. However, the diglyme-HCl method leaves a small lignin residue in the crude
δ(13)C and δ(18)O values from sapwood of a single Pinus uncinata tree, from a high elevation site in the Spanish Pyrenees, were determined to evaluate the differences between whole wood and resin-free whole wood. This issue is addressed for the first time with P. uncinata over a 38-year long period.
For analysis of carbon isotope discrimination in wood, cellulose or holocellulose is often preferred to whole tissue because of the variability in isotopic composition of different wood components and the relative immobility of cellulose. Most currently used methods for the preparation of wood
Microanalytical techniques were developed which allow the rapid characterization of fiber components and morphology of loblolly pine in a large number of samples. These techniques consist of extractives removal, holocellulose preparation, alpha-cellulose and lignin content determination, and fiber
Nucleotide diversity in eight genes related to wood formation was investigated in two pine species, Pinus pinaster and P. radiata. The nucleotide diversity patterns observed and their properties were compared between the two species according to the specific characteristics of the samples analysed.
Plants have the ability to reorient their vertical growth when exposed to inclination. This response can be as quick as 2 h in inclined young pine (Pinus radiata D. Don) seedlings, with over accumulation of lignin observed after 9 days s. Several studies have identified expansins involved in cell
The destruction wrought by North Atlantic hurricanes in 2004 and 2005 dramatically emphasizes the need for better understanding of tropical cyclone activity apart from the records provided by meteorological data and historical documentation. We present a 220-year record of oxygen isotope values of
The mass spectrometric investigations of carbon isotope composition of glucose received from α-cellulose samples derived from Scots pine (Pinus sylvestris L.) growing in Niepołomice Forest were the main aim of this study. The annual rings covered the time span from 1950 to 2000. α-Cellulose samples
The mass spectrometric analysis of the impact of sulfur dioxide and dust emission on carbon and oxygen stable isotopic compositions of glucose hydrolysed from α-cellulose samples extracted from Scots pine growing in the vicinity of "Huta Katowice" steelworks was the main aim of this study. The
In this study, four kinds of lignocellulosic fibers (LFs), namely, those from Chinese fir (Cunninghamia lanceolata), Taiwan red pine (Pinus taiwanensis), India-charcoal trema (Trema orientalis) and makino bamboo (Phyllostachys makinoi), were selected as reinforcements and incorporated into