Noncalcemic actions of 1,25-dihydroxyvitamin D3 and clinical applications.
Avainsanat
Abstrakti
Vitamin D is absolutely essential for the maintenance of a healthy skeleton. Without vitamin D, children develop rickets and adults exacerbate their osteoporosis and develop osteomalacia. Casual exposure to sunlight is the major source of vitamin D for most people. During exposure to sunlight, ultraviolet B photons photolyze cutaneous stores of 7-dehydrocholesterol to previtamin D3. Previtamin D3 undergoes a thermal isomerization to form vitamin D3. Increased skin pigmentation, changes in latitude, time of day, sunscreen use, and aging can have a marked influence on the cutaneous production of vitamin D3. Once vitamin D3 is formed in the skin or ingested in the diet, it must be hydroxylated in the liver and kidney to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. It is now recognized that a wide variety of tissues and cells, both related to calcium metabolism and unrelated to calcium metabolism, are target sites for 1,25(OH)2D3. 1,25(OH)2D3 stimulates intestinal calcium absorption and mobilizes stem cells to mobilize calcium stores from bone. Noncalcemic tissues that possess receptors for 1,25(OH)2D3 respond to the hormone in a variety of ways. Of great interest is that 1,25(OH)2D3 is a potent antiproliferative and prodifferentiation mediator. As a result, 1,25(OH)2D3 and its analogs have wide clinical application in such diverse clinical disorders as rheumatoid and psoriatic arthritis; diabetes mellitus type I; hypertension; cardiac arrhythmias; seizure disorders; cancers of the breast, prostate, and colon; some leukemias and myeloproliferative disorders; chemotherapy-induced hair loss; and skin rejuvenation as well as skin diseases like psoriasis and ichthyosis.