Sivu 1 alkaen 55 tuloksia
UNASSIGNED
Microbial biosynthesis of alkanes is considered a promising method for the sustainable production of drop-in fuels and chemicals. Carbon dioxide would be an ideal carbon source for these production systems, but efficient production of long carbon chains from CO2 is difficult to achieve in
Tapetosomes are abundant organelles in tapetum cells during the active stage of pollen maturation in Brassicaceae species. They possess endoplasmic reticulum (ER)-derived vesicles and oleosin-coated lipid droplets, but their overall composition and function have not been established. In situ
Most aerial surfaces of plants are covered by cuticular wax that is synthesized in epidermal cells. The wax mixture on the inflorescence stems of Arabidopsis (Arabidopsis thaliana) is dominated by alkanes, secondary alcohols, and ketones, all thought to be formed sequentially in the decarbonylation
Land plant aerial organs are covered by a hydrophobic layer called the cuticle that serves as a waterproof barrier protecting plants against desiccation, ultraviolet radiation, and pathogens. Cuticle consists of a cutin matrix as well as cuticular waxes in which very-long-chain (VLC) alkanes are the
Cuticular waxes coat the primary aerial tissues of land plants and serve as a protective barrier against non-stomatal water loss and various environmental stresses. Alkanes are the most prominent cuticular wax components and are thought to have an important role in controlling permeability of the
Plant aerial organs are coated with cuticular waxes, a hydrophobic layer that primarily serves as a waterproofing barrier. Cuticular wax is a mixture of aliphatic very-long-chain molecules, ranging from 22 to 48 carbons, produced in the endoplasmic reticulum of epidermal cells. Among all wax
Cuticle waxes, which are primarily comprised of very-long-chain (VLC) alkanes, play an important role in plant reproductive development. ECERIFERUM1 (CER1) is recognized as the core element for VLC alkane biosynthesis in Arabidopsis (Arabidopsis thaliana). However, genes involved in the VLC alkane
In land plants, very-long-chain (VLC) alkanes are major components of cuticular waxes that cover aerial organs, mainly acting as a waterproof barrier to prevent nonstomatal water loss. Although thoroughly investigated, plant alkane synthesis remains largely undiscovered. The Arabidopsis thaliana
Cuticular wax accumulation and composition affects drought resistance in plants. Brachypodium distachyon plants subjected to water deficit and polyethylene glycol treatments resulted in a significant increase in total wax load, in which very-long-chain (VLC) alkanes were more sensitive to
Increasing concerns about limited fossil fuels and global environmental problems have focused attention on the need to develop sustainable biofuels from renewable resources. Although microbial production of diesel has been reported, production of another much in demand transport fuel, petrol
Thirteen Arabidopsis thaliana mutants with deviating epicuticular wax layers (i.e., cer mutants) were isolated by screening 13 000 transformed lines produced by the seed transformation method. After crossing the 13 mutants to some of the previously known cer mutant lines, 12 of our mutants mapped to
Colloidal silver laser desorption/ionization (LDI) mass spectrometry (MS) was employed to directly profile and image epicuticular wax metabolites on a variety of different surfaces of Arabidopsis thaliana leaves and flowers. Major cuticular wax compounds, such as very long-chain fatty acids,
High-spatial resolution and high-mass resolution techniques are developed and adopted for the mass spectrometric imaging of epicuticular lipids on the surface of Arabidopsis thaliana. Single cell level spatial resolution of approximately 12 mum was achieved by reducing the laser beam size by using
The A. thaliana EST database was screened using consensus motifs derived from P450 families CYP52 and CYP4 catalyzing the omega-hydroxylation of fatty acids and alkanes in Candida and in mammals. One EST cDNA fragment was detected in this way and the corresponding full-length cDNA was cloned from a
Aim of present work was to assess in-planta association potential of isolated endophytic bacterial strain Pseudomonas sp. (J10) (KY608252) with two cultivars of Lolium perenne L. (small & jumbo) and Arabidopsis thaliana L. for total petroleum hydrocarbon (TPH) degradation, alkane monooxygenase