Sivu 1 alkaen 20 tuloksia
New antitumor clerodane diterpenes, named casearins A-F, have been isolated from the leaves of Casearia sylvestris Sw. (Flacourtiaceae). These structures have been completely elucidated by two dimensional nuclear magnetic resonance, circular dichroism spectroscopy, X-ray analysis, and chemical
BACKGROUND
Casearia sylvestris (Salicaceae) is found in South America and presents antiulcerogenic, cytotoxic, antimicrobial, anti-inflammatory and antihypertensive activities.
OBJECTIVE
To assess the in vivo and ex vivo antitumor action of a fraction with casearins (FC) and its main component -
A search for bioactive natural products as anticancer lead compounds has led to the isolation of five new clerodane diterpenoids (1-5) from the twigs of Casearia kurzii. Their structures were elucidated by extensive analysis of their NMR, IR, and HRESIMS data, and the absolute configurations were
Different parts of four edible medicinal plants (Casearia capitellata, Baccaurea motleyana, Phyllanthus pulcher and Strobilanthus crispus), indigenous to Malaysia, were extracted in different solvents, sequentially. The obtained 28 extracts were evaluated for their in vitro anticancer properties,
BACKGROUND
Casearia sylvestris is a medicinal plant traditionally used to treat snakebites, wounds, inflammation and gastric ulcers and scientific supports for have demonstrated its antitumor, antihyperlipidemic and antiparasitic properties.
OBJECTIVE
To assess the effects of a fraction with
Casearia sylvestris Swartz (Salicaceae) is a plant commonly widespread in the Americas. It has oxygenated tricyclic bioactive clerodane diterpenes with antimicrobial, antiulcer, larvicidal, chemopreventive, anti-inflammatory, antioxidant and antiproliferative properties. Due to this requirement for
Extracts, essential oils and molecules from Casearia sylvestris have popularly shown pharmacological actions against chronic diseases, as anxiety, inflammation, cancer and dyslipidemia. In the context of antitumoral therapy, we investigated in vitro, ex vivo and in vivo toxicological Bioactivity-guided fractionation of several bioactive extracts obtained from Cerrado and Atlantic Forest plant species led to the isolation of potent DNA-damaging piperidine 1-5 and guanidine alkaloids 6-9 from Cassia leptophylla and Pterogyne nitens respectively, two common Leguminosae from
Casearia sylvestris Sw., popularly known in Brazil as 'guaçatonga', has been used as antitumor, antiseptic, antiulcer, local anaesthetic and healer in folk medicine. Snakebite envenomation by Bothrops jararacussu (Bjssu) constitutes a relevant public health hazard capable of inducing serious local
Clerodane diterpenes have demonstrated cytotoxic, antiplasmodial and anti-ulcer properties. In the present work, we determined the cytotoxic effect of casearin L (Cas L), O (Cas O) and X (Cas X) and (-)-hardwickiic acid isolated from Casearia sylvestris leaves, and investigated the underlying
Casearin X (CAS X) is the major clerodane diterpene isolated from the leaves of Casearia sylvestris and has been extensively studied due to its powerful cytotoxic activity at low concentrations. Promising results for in vivo antitumor action have also been described when CAS X was administered
A search for bioactive natural products as anticancer lead compounds resulted in the isolation of one previously undescribed and three known clerodane diterpenoids (1-4) from Casearia kurzii. The structures of these compounds were established by analysis of their NMR, MS, and electronic circular
Ethanolic extract of Casearia sylvestris is thought to be antimutagenic. In this study, we attempted to determine whether this extract and casearin X (a clerodane diterpene from C. sylvestris) are protective against the harmful effects of airborne pollutants from sugarcane burning. To that end, we
Casearia sylvestris Swartz is a medicinal plant widely distributed in Brazil. It has anti-inflammatory, antiulcer and antitumor activities and is popularly used to treat snakebites, wounds, diarrhea, flu and chest colds. Its leaves are rich in oxygenated tricyclic cis-clerodane diterpenes,