12 tuloksia
The effects of cannabinoid subtype 1 (CB(1)) receptor activation were determined on smooth muscle, inhibitory and excitatory motorneuronal function in strips of human colonic longitudinal muscle (LM) and circular muscle (CM) in vitro. Electrical field stimulation (EFS; 0.5-20 Hz, 50 V) evoked a
Double-label in situ hybridization was used to identify the phenotypes of striatal neurons that express mRNA for cannabinoid CB(1) receptors. Simultaneous detection of multiple mRNAs was performed by combining a (35)S-labeled ribonucleotide probe for CB(1) mRNA with digoxigenin-labeled riboprobes
Opioids and cannabinoids have profound inhibitory actions on intestinal motility which are mediated in part by their cognate receptors in the enteric nervous system. In the present study, we examined the expression of immunoreactivity for delta- and kappa-opioid receptors, CB(1)-cannabinoid
Cannabinoids have major effects on central nervous system function. Recent studies indicate that cannabinoid effects on the visual system have a retinal component. Immunocytochemical methods were used to localize cannabinoid CB1 receptor immunoreactivity (CB1R-IR) and an endocannabinoid (anandamide
Septohippocampal cholinergic neurons play key roles in learning and memory processes, and in the generation of hippocampal theta rhythm. The range of receptors for endogenous modulators expressed on these neurons is unclear. Here we describe GABA(B) 1a/b receptor (GABA(B)R) and type 1 cannabinoid
The cannabinoid CB1 receptor (CB1 R) is the most abundant G protein-coupled receptor in the central nervous system, consistent with the important role of endocannabinoids as neuromodulators. Cannabinoids also modulate the function of G protein-coupled receptor 55 (GPR55), which
BACKGROUND
Immunohistochemical (IHC) evidence shows that cannabinoid receptors (CB) are expressed in human bladders and cannabinoid agonists are known to inhibit detrusor contractility. However, the mechanism for this inhibition remains unknown. In addition, the role of CB in detrusor overactivity
Cannabinoid-1 (CB(1)) receptors on myenteric neurons are involved in the regulation of intestinal motility. Our aim was to investigate CB(1) receptor involvement in ascending neurotransmission in mouse colon and to characterize the involved structures by functional and morphological means. Presence
Cannabis has been used for centuries in the medicinal treatment of gastrointestinal disorders. Endogenous cannabinimimetic substances such as 2-arachidonylglycerol have been isolated from gut homogenates and CB1-cannabinoid binding sites have been identified in small intestine. In this study,
Activation of cannabinoid CB(1) receptors inhibits gastrointestinal motility, propulsion, and transit, whereas selective antagonism of these receptors has the opposite effects, suggesting the presence of endocannabinoid tone. Supporting evidence for presynaptic CB(1) receptors on myenteric neurons
1. The role of cannabinoid (CB) receptors in the regulation of gastric acid secretion was investigated in the rat by means of functional experiments and by immunohistochemistry. 2. In anaesthetized rats with lumen-perfused stomach, the non selective CB-receptor agonist WIN 55,212-2 (0.30 - 4.00
Cannabinoids have been suggested to protect retinal ganglion cells in different models of toxicity, but their effects on other retinal neurons are poorly known. We investigated the neuroprotective actions of the endocannabinoid N-arachidonoyl ethanolamine (Anandamide/AEA) and the synthetic