Sivu 1 alkaen 34 tuloksia
RING (Really Interesting New Gene) finger proteins play crucial roles in abiotic stress responses in plants. We report the RING finger E3 ligase gene, an Oryza sativa salt, ABA and drought stress-induced RING finger protein 1 gene (OsSADR1). We demonstrated that although OsSAR1 possesses E3 ligase
NADP-malic enzyme (NADP-ME, EC 1.1.1.40) functions in many different pathways in plants, and has recently been implicated in plant defense such as in responses to wounding and UV-B radiation. In this study, we isolated a complementary DNA (cDNA) clone by using the differential display method and
Glyoxalase I (Gly I) is a component of the glyoxalase system which is involved in the detoxification of methylglyoxal, a byproduct of glycolysis. In the present study, a gene of rice (Oryza sativa L., cv. Nipponbare) encoding Gly I was cloned and characterized. The quantitative real-time PCR
A method is described for cryopreservation of cell suspension lines of rice (Oryza sativa L.) for use in protoplast research and as a way of retaining desirable characteristics of cell lines. The procedure involves pre-culture with mannitol, addition of a cryoprotectant solution of sucrose, dimethyl
Ascorbate peroxidase (APx; EC 1.11.1.11) plays an important role in scavenging the toxic effects of H(2)O(2) in higher plants. Eight types of APx have been described for Oryza sativa: two cytosolic (OsAPx1 and OsAPx2), two putative peroxisomal (OsAPx3 and OsAPx4), and four chloroplastic isoforms
Ca(2+)/calmodulin transduction pathways have been implicated in mediating stress response and tolerance in plants. Here, three genes encoding calmodulin (Cam) members of the EF-hand family of Ca(2+)-binding proteins were identified from Oryza sativa L. databases. Complementary DNA for each of the
Salinization is one of the most important abiotic stressors for crop growth and productivity. Rice (Oryza sativa L.), as the major food source around the world, is very sensitive to salt, especially at seedling stage. In order to examine how salt stress influences the metabolism of rice, we compared
Myo-inositol oxygenase (MIOX), a unique monooxygenase, catalyzes the oxidation of myo-inositol to d-glucuronic acid. However, the protective role of MIOX in plants against oxidative stress or drought stress remains unknown. In this study, the functional characterization of MIOX obtained from the
A new pressure-perfusion technique was used to measure hydraulic and osmotic properties of the outer part of roots (OPR) of 30-day-old rice plants (lowland cultivar: IR64, and upland cultivar: Azucena). The OPR comprised rhizodermis, exodermis, sclerenchyma and one cortical cell layer. The technique
Root and embryo derived callus tissues of rice grown on sucrose alone as carbon source lost their ability to organise shoots by 75 and 100 days in culture respectively. Along with 2% sucrose, either 3% sorbitol or 3% mannitol was found to be necessary in the growth medium for the callus to
Protein translation is very sensitive to salt stress and the proteins involved in this process may be an important determinant of salt tolerance. We isolated a rice cDNA clone (OseIF1) from a salt-tolerant indica cultivar (Pokkali) subjected to 150 mm NaCl, the deduced amino acid sequence of which
Abiotic stress is a major limiting factor in crop production. Physiological comparisons between contrasting abiotic stress-tolerant genotypes will improve understanding of stress-tolerant mechanisms. Rice seedlings (S3 stage) of a chilling-tolerant (CT) genotype (CT6748-8-CA-17) and a
An adequate supply of mineral nutrients is crucial to obtain optimum productivity in agriculture. The present investigation was carried to find the inoculation effect of plant growth-promoting rhizobacteria (PGPR), i.e., Paenibacillus lentimorbus B-30488 (B-30488), Bacillus amyloliquefaciens SN13
OBJECTIVE
Salt stress leads to attenuated growth and productivity in rice. Transcription factors like heat shock factors (HSFs) represent central regulators of stress adaptation. Heat shock factors of the classes A and B are well established as regulators of thermal and non-thermal stress responses
Exposure of seedlings of a chilling-sensitive variety of rice (Oryza sativa L. cv. Wasetoittu) to water stress (0.5 M mannitol, 30 min) at room temperature induced a degree of chilling resistance. No such resistance was induced by exogenous abscisic acid (ABA) application (10 microM, 60 min). Upon