Français
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Contributions to Nephrology 2011

Can we identify prerenal physiology and does it matter?

Seuls les utilisateurs enregistrés peuvent traduire des articles
Se connecter S'inscrire
Le lien est enregistré dans le presse-papiers
Didier Payen
Matthieu Legrand

Mots clés

Abstrait

The classic concept of 'prerenal azotemia' is an entity not well diagnosed in the clinic as it is mainly the time evolution that confirms the absence of renal injury. However, this entity seems to be associated with a worse prognosis compared to patients with normal kidney function. In intensive care unit (ICU) patients, this entity results from the interaction with outside factors, renal hypoxia and cellular infiltration by immune cells. The mechanism of such an entity may result from perfusion abnormalities, but more importantly from an oxygenation deficit. This syndrome can be seen as the first step in a continuum from adapted renal function to the occurrence of renal injury. Early renal hemodynamics might be important for predicting the occurrence of AKI. However, the paradigm of renal ischemia as a major mechanism is associated with microcirculation alteration and immune cell infiltration in the generation of AKI. Because creatinine elevation is delayed from renal injury, early detection might help in deciding on the therapeutic strategy. To achieve such a goal, the development of biomarkers for renal injury might be helpful. Some molecules such as NGAL, kidney injury molecule-1, interleukin-18 and cystatin have been proposed and validated as predictors of renal injury in clinical contexts. Although controversial results have been published, most of the results demonstrate a normal level in the presence of prerenal azotemia compared to AKI, limiting their interest for prediction. Importantly, clusters of proteome in urine might improve the sensitivity and specificity to predict AKI in presence of prerenal azotemia.

Rejoignez notre
page facebook

La base de données d'herbes médicinales la plus complète soutenue par la science

  • Fonctionne en 55 langues
  • Cures à base de plantes soutenues par la science
  • Reconnaissance des herbes par image
  • Carte GPS interactive - étiquetez les herbes sur place (à venir)
  • Lisez les publications scientifiques liées à votre recherche
  • Rechercher les herbes médicinales par leurs effets
  • Organisez vos intérêts et restez à jour avec les nouvelles recherches, essais cliniques et brevets

Tapez un symptôme ou une maladie et lisez des informations sur les herbes qui pourraient aider, tapez une herbe et voyez les maladies et symptômes contre lesquels elle est utilisée.
* Toutes les informations sont basées sur des recherches scientifiques publiées

Google Play badgeApp Store badge