Français
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemical Research in Toxicology 2011-Sep

Preclinical genotoxicology of nor-β-lapachone in human cultured lymphocytes and Chinese hamster lung fibroblasts.

Seuls les utilisateurs enregistrés peuvent traduire des articles
Se connecter S'inscrire
Le lien est enregistré dans le presse-papiers
Bruno C Cavalcanti
Francisco W A Barros
Igor O Cabral
José R O Ferreira
Hemerson I F Magalhães
Hélio V N Júnior
Eufrânio N da Silva Júnior
Fabiane C de Abreu
Cícero O Costa
Marília O F Goulart

Mots clés

Abstrait

Nor-β-lapachone has shown several biological properties. Regarding cytotoxic activity against cancer cell lines, it has been recognized as an important prototype. However, quinonoid drugs present a major challenge because of their toxicity. In this study, we evaluated the cytotoxicity and genetic toxicity of nor-β-lapachone in human lymphocytes and HL-60 leukemia cells and murine V79 fibroblasts, to shed some light on its selectivity toward cancer cells. As measured by MTT test, exposure of V79 cells to nor-β-lapachone resulted in a weak cytotoxicity (IC(50) = 13.41 μM), and at a concentration up to 21.9 μM, no cytotoxic effect was observed in lymphocytes, while in HL-60 cells, nor-β-lapachone elicited significantly greater cytotoxicity (IC(50) = 1.89 μM). Cultures coexposed to GSH-OEt showed an increased viability, which may indicate a neutralization of ROS generated by quinonoid treatment. In fact, only the highest concentrations of nor-β-lapachone (10 or 20 μM) caused an increase in oxidative stress in nontumor levels cells as measured by TBARS and nitrite/nitrate detection. This was accompanied by an alteration in intracellular thiol content. However, NAC pre-exposure restored the redox equilibrium of the cells and the concentration of thiol levels to control values. Nor-β-lapachone at 2.5 and 5 μM failed to induce DNA damage in nontumor cells, but at the highest concentrations tested, it induced single and double DNA strand breaks and increased the frequency of chromosomal aberrations. Interestingly, these damages were prevented by NAC pretreatment or exacerbated by prior exposure to the GSH-depleting agent 1-bromoheptane. In electrochemical experiments, nor-β-lapachone at the same concentrations as those used in genotoxic tests did not damage DNA directly, but at the highest concentration tested (200 μM), it caused a very weak DNA interaction. Corroborating electrochemical data, oxidative modifications of DNA bases were observed, as checked by DNA repair enzymes EndoIII and FPG, which reinforced the indirect actions caused by nor-β-lapachone through ROS generation and not via DNA intercalation. The DNA repair capacities were higher for nontumor cells than for leukemia cells, which may be related to the selective cytoxicity of nor-β-lapachone toward cancer cells. Our data suggest that ROS play an important role in nor-β-lapachone toxicity and that its DNA-damaging effect occurs only at concentrations several times higher than that needed for its antiproliferative effect on cancer cells.

Rejoignez notre
page facebook

La base de données d'herbes médicinales la plus complète soutenue par la science

  • Fonctionne en 55 langues
  • Cures à base de plantes soutenues par la science
  • Reconnaissance des herbes par image
  • Carte GPS interactive - étiquetez les herbes sur place (à venir)
  • Lisez les publications scientifiques liées à votre recherche
  • Rechercher les herbes médicinales par leurs effets
  • Organisez vos intérêts et restez à jour avec les nouvelles recherches, essais cliniques et brevets

Tapez un symptôme ou une maladie et lisez des informations sur les herbes qui pourraient aider, tapez une herbe et voyez les maladies et symptômes contre lesquels elle est utilisée.
* Toutes les informations sont basées sur des recherches scientifiques publiées

Google Play badgeApp Store badge